PyTorch使用教程(9)-使用profiler进行模型性能分析
1、简介
PyTorch Profiler是一个内置的性能分析工具,可以帮助开发者定位计算资源(如CPU、GPU)的瓶颈,从而更好地优化PyTorch程序。通过捕获和分析GPU的计算、内存和带宽利用情况,能够有效识别并解决性能瓶颈。

2、原理介绍
PyTorch Profiler通过记录PyTorch程序中张量运算的事件来工作。这些事件包括张量的创建、释放、数据传输以及计算等。Profiler会在程序执行过程中收集这些事件的数据,并在程序结束后生成一个详细的性能报告。报告中包含每个事件的详细信息,如事件类型、时间戳、执行时间等。
Profiler提供了许多可配置的参数,以满足不同场景的需求。例如,activities参数可以指定要捕获的活动类型(如CPU、CUDA等),record_shapes和profile_memory参数可以分别用于记录输入张量的形状和跟踪内存分配/释放情况。
3、操作步骤与示例代码
步骤1:安装环境
确保你已经安装了PyTorch。如果尚未安装,可以使用以下命令进行安装:
pip install torch torchvision torchaudio
步骤2:导入必要的库
首先,导入所有必要的库。例如,导入PyTorch、torch.profiler以及你希望分析的模型。
import torch
import torch.profiler as profiler
import torchvision.models as models
步骤3:实例化模型并准备输入数据
实例化一个模型,并准备输入数据。例如,可以使用预训练的ResNet-50模型。
model = models.resnet50(pretrained=True)
model.eval()
input_data = torch.randn(1, 3, 224, 224)
步骤4:配置并使用Profiler
使用torch.profiler.profile()函数创建一个Profiler上下文,并设置所需的参数。例如,可以设置record_shapes=True和profile_memory=True以收集张量形状和内存分配/释放的数据。在Profiler上下文中执行模型推理操作。
with profiler.profile(record_shapes=True, profile_memory=True) as prof:with torch.no_grad():output = model(input_data)# 分析Profiler报告
print(prof.key_averages().table(sort_by='cpu_time_total'))
步骤5:分析性能报告
Profiler生成的报告包含每个操作的详细信息,如调用次数、CPU时间、内存占用等。通过分析这些信息,你可以找出模型训练和推理过程中的性能瓶颈。例如,如果某个操作的执行时间特别长,那么它可能是性能瓶颈。
4.示例代码详解
以下是一个完整的示例代码,演示如何使用PyTorch Profiler分析模型推理性能:
import torch
import torch.profiler as profiler
import torchvision.models as models# 加载预训练模型
model = models.resnet50(pretrained=True)
model.eval()# 定义输入数据
input_data = torch.randn(1, 3, 224, 224)# 配置并使用Profiler
with profiler.profile(record_shapes=True, profile_memory=True) as prof:with torch.no_grad():output = model(input_data)# 分析Profiler报告
print(prof.key_averages().table(sort_by='cpu_time_total'))
在上面的代码中,我们首先加载了一个预训练的ResNet-50模型,并定义了一个随机输入数据。然后,我们使用profiler.profile()函数创建一个Profiler上下文,并设置record_shapes=True和profile_memory=True以收集张量形状和内存分配/释放的数据。在Profiler上下文中,我们执行模型推理操作。最后,我们打印Profiler生成的报告,按照CPU时间对事件进行排序。

5、小结
PyTorch Profiler是一个强大的工具,可以帮助开发者深入了解模型训练和推理过程中的性能瓶颈。通过合理地使用Profiler,你可以找到并解决性能问题,从而提高模型性能。希望本教程对你理解和使用PyTorch Profiler有所帮助。
相关文章:
PyTorch使用教程(9)-使用profiler进行模型性能分析
1、简介 PyTorch Profiler是一个内置的性能分析工具,可以帮助开发者定位计算资源(如CPU、GPU)的瓶颈,从而更好地优化PyTorch程序。通过捕获和分析GPU的计算、内存和带宽利用情况,能够有效识别并解决性能瓶颈。 2、原…...
SpringBoot中使用MyBatis-Plus详细介绍
目录 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 2.定义Mapper(也叫dao)层的接口 3.MyBatis-Plus中常用注解 4. 使用MyBatis-Plus时要做如下配置 5.条件构造器 Wrapper 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 M…...
PCL 部分点云视点问题【2025最新版】
目录 一、问题概述二、解决方案1、软件实现2、代码实现三、调整之后博客长期更新,本文最近更新时间为:2025年1月18日。 一、问题概述 针对CloudCompare软件处理过的pcd格式点云,在使用PCL进行特征点提取、配准等实验中最终显示结果出现点云位置偏差较大的问题,本博客给出解…...
【Linux】常见指令(三)
Linux常见指令 01.nano02.cat03.cp04.mv 我的Linux专栏:【Linux】 本节Linux指令讲解的基本框架如下: 大家可以根据自己的需求,自行进行跳转和学习! 01.nano nano Linux 系统中一款简单易用的命令行文本编辑器,适合…...
第5章:Python TDD定义Dollar对象相等性
写在前面 这本书是我们老板推荐过的,我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后,我突然思考,对于测试开发工程师来说,什么才更有价值呢?如何让 AI 工具更好地辅助自己写代码,或许…...
nuxt3项目打包部署到服务器后配置端口号和开启https
nuxt3打包后的项目部署相对于一般vite打包的静态文件部署要稍微麻烦一些,还有一个主要的问题是开发环境配置的.env环境变量在打包后部署时获取不到,具体的解决方案可以参考我之前文章 nuxt3项目打包后获取.env设置的环境变量无效的解决办法。 这里使用的…...
MongoDB文档查询
一、实验目的 1. 理解MongoDB文档数据库的基本概念和特性。 2. 掌握在MongoDB中创建集合和插入文档数据的方法。 3. 学习使用MongoDB进行文档查询操作,包括查询、过滤和排序等。 二、实验环境准备 1. JAVA环境准备:确保Java Development Kit (J…...
【GORM】初探gorm模型,字段标签与go案例
GORM是什么? GORM 是一个Go 语言 ORM(对象关系映射)库,它让我们可以使用结构体来操作数据库,而无需编写SQL 语句 GORM 模型与字段标签详解 在 GORM 中,模型是数据库表的抽象表示,字段标签&am…...
Windows下的Milvus安装秘籍:向量数据库轻松上手
目录 一、简介 二、dockers的安装 1.介绍 2.环境准备 1.启动WSL 的功能。 2.安装并启动Hyper-V Windows10下的安装办法: Windows11下的安装办法: 启动Hyper-V 3.Docker的安装 4、验证是否安装成功 三、安装Milvus 1.Milvus下载 2.Milvus启动…...
在GUI中添加一个Label
标签是一种非常简单的小部件,它可以为我们的图形用户界面(GUI)增添价值。它可以阐释其他组件的用途,提供一些额外的信息,这可以引导用户理解输入框组件的含义,也能够解释那些无需用户输入数据的组件所显示数据的含义。 准备就绪 我们将扩展第一个应用案例,即《创建第一…...
hive连接mysql报错:Unknown version specified for initialization: 3.1.0
分享下一些报错的可能原因吧 1.要开启hadoop 命令:start-all.sh 2.检查 hive-site.xml 和 hive-env.sh。 hive-site.xml中应设置自己mysql的用户名和密码 我的hive-site.xml如下: <configuration><property><name>javax.jdo.opt…...
Unity Shader学习日记 part5 CG基础
在了解完Shader的基本结构之后,我们再来看看编写着色器的语言。 Shader编写语言有CG,HLSL两种,我们主要学习CG的写法。 数据类型 CG的基础变量类型 uint a12;//无符号32位整形 int b12;//32位整形float f1.2f;//32位浮点型 half h1.2h;//…...
第7章:Python TDD测试Franc对象乘法功能
写在前面 这本书是我们老板推荐过的,我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后,我突然思考,对于测试开发工程师来说,什么才更有价值呢?如何让 AI 工具更好地辅助自己写代码,或许…...
两级式三相光伏并网逆变器Matlab/Simulink仿真模型
忘记更新最经典的光伏并网仿真模型了,作为包含经典的MPPT和并网恒功率因素的双闭环控制模型,也是很多相关专业学生的入门研究内容,光伏并网模型三相的和单相都有。 其中三相光伏并网逆变器有大功率和小功率的两种,之前早在硕士期…...
redis性能优化参考——筑梦之路
基准性能测试 redis响应延迟耗时多长判定为慢? 比如机器硬件配置比较差,响应延迟10毫秒,就认为是慢,机器硬件配置比较高,响应延迟0.5毫秒,就认为是慢。这个没有固定的标准,只有了解了你的 Red…...
Ubuntu 22.04 TLS 忘记root密码,重启修改的解决办法
1.想办法进入这个界面,我这里是BIOS引导的是按Esc按一下就行,UEFI的貌似是按Shift不得而知,没操作过。下移到Advanced options for Ubuntu,按enter 2.根据使用的内核版本,选择带「recovery mode」字样的内核版本&#…...
HTML<bdo>标签
例子 指定文本方向: <bdo dir"rtl"> This text will go right-to-left. </bdo> <!DOCTYPE html> <html> <body> <h1>The bdo element</h1> <p>This paragraph will go left-to-right.</p> …...
STM32+W5500+以太网应用开发+003_TCP服务器添加OLED(u8g2)显示状态
STM32W5500以太网应用开发003_TCP服务器添加OLED(u8g2)显示状态 实验效果3-TCP服务器OLED1 拷贝显示驱动代码1.1 拷贝源代码1.2 将源代码添加到工程1.3 修改代码优化等级1.4 添加头文件路径1.5 修改STM32CubeMX工程 2 修改源代码2.1 添加头文件2.2 main函…...
【机器学习实战中阶】使用SARIMAX,ARIMA预测比特币价格,时间序列预测
数据集说明 比特币价格预测(轻量级CSV)关于数据集 致谢 这些数据来自CoinMarketCap,并且可以免费使用该数据。 https://coinmarketcap.com/ 数据集:链接: 价格预测器 源代码与数据集 算法说明 SARIMAX(Seasonal AutoRegressive …...
各语言镜像配置汇总
镜像配置汇总 Nodejs [ npm ]Python [ pip ] Nodejs [ npm ] // # 记录日期:2025-01-20// 查询当前使用的镜像 npm get registry// 设置淘宝镜像 npm config set registry https://registry.npmmirror.com/// 恢复为官方镜像 npm config set registry https://regi…...
未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?
编辑:陈萍萍的公主一点人工一点智能 未来机器人的大脑:如何用神经网络模拟器实现更智能的决策?RWM通过双自回归机制有效解决了复合误差、部分可观测性和随机动力学等关键挑战,在不依赖领域特定归纳偏见的条件下实现了卓越的预测准…...
零门槛NAS搭建:WinNAS如何让普通电脑秒变私有云?
一、核心优势:专为Windows用户设计的极简NAS WinNAS由深圳耘想存储科技开发,是一款收费低廉但功能全面的Windows NAS工具,主打“无学习成本部署” 。与其他NAS软件相比,其优势在于: 无需硬件改造:将任意W…...
【WiFi帧结构】
文章目录 帧结构MAC头部管理帧 帧结构 Wi-Fi的帧分为三部分组成:MAC头部frame bodyFCS,其中MAC是固定格式的,frame body是可变长度。 MAC头部有frame control,duration,address1,address2,addre…...
Go 语言接口详解
Go 语言接口详解 核心概念 接口定义 在 Go 语言中,接口是一种抽象类型,它定义了一组方法的集合: // 定义接口 type Shape interface {Area() float64Perimeter() float64 } 接口实现 Go 接口的实现是隐式的: // 矩形结构体…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
视频字幕质量评估的大规模细粒度基准
大家读完觉得有帮助记得关注和点赞!!! 摘要 视频字幕在文本到视频生成任务中起着至关重要的作用,因为它们的质量直接影响所生成视频的语义连贯性和视觉保真度。尽管大型视觉-语言模型(VLMs)在字幕生成方面…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
