当前位置: 首页 > news >正文

PyTorch使用教程(9)-使用profiler进行模型性能分析

1、简介

PyTorch Profiler是一个内置的性能分析工具,可以帮助开发者定位计算资源(如CPU、GPU)的瓶颈,从而更好地优化PyTorch程序。通过捕获和分析GPU的计算、内存和带宽利用情况,能够有效识别并解决性能瓶颈。
在这里插入图片描述

2、原理介绍

PyTorch Profiler通过记录PyTorch程序中张量运算的事件来工作。这些事件包括张量的创建、释放、数据传输以及计算等。Profiler会在程序执行过程中收集这些事件的数据,并在程序结束后生成一个详细的性能报告。报告中包含每个事件的详细信息,如事件类型、时间戳、执行时间等。
Profiler提供了许多可配置的参数,以满足不同场景的需求。例如,activities参数可以指定要捕获的活动类型(如CPU、CUDA等),record_shapes和profile_memory参数可以分别用于记录输入张量的形状和跟踪内存分配/释放情况。

3、操作步骤与示例代码

步骤1:安装环境
确保你已经安装了PyTorch。如果尚未安装,可以使用以下命令进行安装:

pip install torch torchvision torchaudio

步骤2:导入必要的库
首先,导入所有必要的库。例如,导入PyTorch、torch.profiler以及你希望分析的模型。

import torch
import torch.profiler as profiler
import torchvision.models as models

步骤3:实例化模型并准备输入数据
实例化一个模型,并准备输入数据。例如,可以使用预训练的ResNet-50模型。

model = models.resnet50(pretrained=True)
model.eval()
input_data = torch.randn(1, 3, 224, 224)

步骤4:配置并使用Profiler
使用torch.profiler.profile()函数创建一个Profiler上下文,并设置所需的参数。例如,可以设置record_shapes=True和profile_memory=True以收集张量形状和内存分配/释放的数据。在Profiler上下文中执行模型推理操作。

with profiler.profile(record_shapes=True, profile_memory=True) as prof:with torch.no_grad():output = model(input_data)# 分析Profiler报告
print(prof.key_averages().table(sort_by='cpu_time_total'))

步骤5:分析性能报告
Profiler生成的报告包含每个操作的详细信息,如调用次数、CPU时间、内存占用等。通过分析这些信息,你可以找出模型训练和推理过程中的性能瓶颈。例如,如果某个操作的执行时间特别长,那么它可能是性能瓶颈。

4.示例代码详解

以下是一个完整的示例代码,演示如何使用PyTorch Profiler分析模型推理性能:

import torch
import torch.profiler as profiler
import torchvision.models as models# 加载预训练模型
model = models.resnet50(pretrained=True)
model.eval()# 定义输入数据
input_data = torch.randn(1, 3, 224, 224)# 配置并使用Profiler
with profiler.profile(record_shapes=True, profile_memory=True) as prof:with torch.no_grad():output = model(input_data)# 分析Profiler报告
print(prof.key_averages().table(sort_by='cpu_time_total'))

在上面的代码中,我们首先加载了一个预训练的ResNet-50模型,并定义了一个随机输入数据。然后,我们使用profiler.profile()函数创建一个Profiler上下文,并设置record_shapes=True和profile_memory=True以收集张量形状和内存分配/释放的数据。在Profiler上下文中,我们执行模型推理操作。最后,我们打印Profiler生成的报告,按照CPU时间对事件进行排序。
在这里插入图片描述

5、小结

PyTorch Profiler是一个强大的工具,可以帮助开发者深入了解模型训练和推理过程中的性能瓶颈。通过合理地使用Profiler,你可以找到并解决性能问题,从而提高模型性能。希望本教程对你理解和使用PyTorch Profiler有所帮助。

相关文章:

PyTorch使用教程(9)-使用profiler进行模型性能分析

1、简介 PyTorch Profiler是一个内置的性能分析工具,可以帮助开发者定位计算资源(如CPU、GPU)的瓶颈,从而更好地优化PyTorch程序。通过捕获和分析GPU的计算、内存和带宽利用情况,能够有效识别并解决性能瓶颈。 2、原…...

SpringBoot中使用MyBatis-Plus详细介绍

目录 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 2.定义Mapper(也叫dao)层的接口 3.MyBatis-Plus中常用注解 4. 使用MyBatis-Plus时要做如下配置 5.条件构造器 Wrapper 一、MyBatis-Plus的使用步骤 1.引入MybatisPlus的起步依赖 M…...

PCL 部分点云视点问题【2025最新版】

目录 一、问题概述二、解决方案1、软件实现2、代码实现三、调整之后博客长期更新,本文最近更新时间为:2025年1月18日。 一、问题概述 针对CloudCompare软件处理过的pcd格式点云,在使用PCL进行特征点提取、配准等实验中最终显示结果出现点云位置偏差较大的问题,本博客给出解…...

【Linux】常见指令(三)

Linux常见指令 01.nano02.cat03.cp04.mv 我的Linux专栏:【Linux】 本节Linux指令讲解的基本框架如下: 大家可以根据自己的需求,自行进行跳转和学习! 01.nano nano Linux 系统中一款简单易用的命令行文本编辑器,适合…...

第5章:Python TDD定义Dollar对象相等性

写在前面 这本书是我们老板推荐过的,我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后,我突然思考,对于测试开发工程师来说,什么才更有价值呢?如何让 AI 工具更好地辅助自己写代码,或许…...

nuxt3项目打包部署到服务器后配置端口号和开启https

nuxt3打包后的项目部署相对于一般vite打包的静态文件部署要稍微麻烦一些,还有一个主要的问题是开发环境配置的.env环境变量在打包后部署时获取不到,具体的解决方案可以参考我之前文章 nuxt3项目打包后获取.env设置的环境变量无效的解决办法。 这里使用的…...

MongoDB文档查询

一、实验目的 1. 理解MongoDB文档数据库的基本概念和特性。 2. 掌握在MongoDB中创建集合和插入文档数据的方法。 3. 学习使用MongoDB进行文档查询操作,包括查询、过滤和排序等。 二、实验环境准备 1. JAVA环境准备:确保Java Development Kit (J…...

【GORM】初探gorm模型,字段标签与go案例

GORM是什么? GORM 是一个Go 语言 ORM(对象关系映射)库,它让我们可以使用结构体来操作数据库,而无需编写SQL 语句 GORM 模型与字段标签详解 在 GORM 中,模型是数据库表的抽象表示,字段标签&am…...

Windows下的Milvus安装秘籍:向量数据库轻松上手

目录 一、简介 二、dockers的安装 1.介绍 2.环境准备 1.启动WSL 的功能。 2.安装并启动Hyper-V Windows10下的安装办法: Windows11下的安装办法: 启动Hyper-V 3.Docker的安装 4、验证是否安装成功 三、安装Milvus 1.Milvus下载 2.Milvus启动…...

在GUI中添加一个Label

标签是一种非常简单的小部件,它可以为我们的图形用户界面(GUI)增添价值。它可以阐释其他组件的用途,提供一些额外的信息,这可以引导用户理解输入框组件的含义,也能够解释那些无需用户输入数据的组件所显示数据的含义。 准备就绪 我们将扩展第一个应用案例,即《创建第一…...

hive连接mysql报错:Unknown version specified for initialization: 3.1.0

分享下一些报错的可能原因吧 1.要开启hadoop 命令&#xff1a;start-all.sh 2.检查 hive-site.xml 和 hive-env.sh。 hive-site.xml中应设置自己mysql的用户名和密码 我的hive-site.xml如下&#xff1a; <configuration><property><name>javax.jdo.opt…...

Unity Shader学习日记 part5 CG基础

在了解完Shader的基本结构之后&#xff0c;我们再来看看编写着色器的语言。 Shader编写语言有CG&#xff0c;HLSL两种&#xff0c;我们主要学习CG的写法。 数据类型 CG的基础变量类型 uint a12;//无符号32位整形 int b12;//32位整形float f1.2f;//32位浮点型 half h1.2h;//…...

第7章:Python TDD测试Franc对象乘法功能

写在前面 这本书是我们老板推荐过的&#xff0c;我在《价值心法》的推荐书单里也看到了它。用了一段时间 Cursor 软件后&#xff0c;我突然思考&#xff0c;对于测试开发工程师来说&#xff0c;什么才更有价值呢&#xff1f;如何让 AI 工具更好地辅助自己写代码&#xff0c;或许…...

两级式三相光伏并网逆变器Matlab/Simulink仿真模型

忘记更新最经典的光伏并网仿真模型了&#xff0c;作为包含经典的MPPT和并网恒功率因素的双闭环控制模型&#xff0c;也是很多相关专业学生的入门研究内容&#xff0c;光伏并网模型三相的和单相都有。 其中三相光伏并网逆变器有大功率和小功率的两种&#xff0c;之前早在硕士期…...

redis性能优化参考——筑梦之路

基准性能测试 redis响应延迟耗时多长判定为慢&#xff1f; 比如机器硬件配置比较差&#xff0c;响应延迟10毫秒&#xff0c;就认为是慢&#xff0c;机器硬件配置比较高&#xff0c;响应延迟0.5毫秒&#xff0c;就认为是慢。这个没有固定的标准&#xff0c;只有了解了你的 Red…...

Ubuntu 22.04 TLS 忘记root密码,重启修改的解决办法

1.想办法进入这个界面&#xff0c;我这里是BIOS引导的是按Esc按一下就行&#xff0c;UEFI的貌似是按Shift不得而知&#xff0c;没操作过。下移到Advanced options for Ubuntu&#xff0c;按enter 2.根据使用的内核版本&#xff0c;选择带「recovery mode」字样的内核版本&#…...

HTML<bdo>标签

例子 指定文本方向&#xff1a; <bdo dir"rtl"> This text will go right-to-left. </bdo> <!DOCTYPE html> <html> <body> <h1>The bdo element</h1> <p>This paragraph will go left-to-right.</p> …...

STM32+W5500+以太网应用开发+003_TCP服务器添加OLED(u8g2)显示状态

STM32W5500以太网应用开发003_TCP服务器添加OLED&#xff08;u8g2&#xff09;显示状态 实验效果3-TCP服务器OLED1 拷贝显示驱动代码1.1 拷贝源代码1.2 将源代码添加到工程1.3 修改代码优化等级1.4 添加头文件路径1.5 修改STM32CubeMX工程 2 修改源代码2.1 添加头文件2.2 main函…...

【机器学习实战中阶】使用SARIMAX,ARIMA预测比特币价格,时间序列预测

数据集说明 比特币价格预测&#xff08;轻量级CSV&#xff09;关于数据集 致谢 这些数据来自CoinMarketCap&#xff0c;并且可以免费使用该数据。 https://coinmarketcap.com/ 数据集:链接: 价格预测器 源代码与数据集 算法说明 SARIMAX&#xff08;Seasonal AutoRegressive …...

各语言镜像配置汇总

镜像配置汇总 Nodejs [ npm ]Python [ pip ] Nodejs [ npm ] // # 记录日期&#xff1a;2025-01-20// 查询当前使用的镜像 npm get registry// 设置淘宝镜像 npm config set registry https://registry.npmmirror.com/// 恢复为官方镜像 npm config set registry https://regi…...

23-Oracle 23 ai 区块链表(Blockchain Table)

小伙伴有没有在金融强合规的领域中遇见&#xff0c;必须要保持数据不可变&#xff0c;管理员都无法修改和留痕的要求。比如医疗的电子病历中&#xff0c;影像检查检验结果不可篡改行的&#xff0c;药品追溯过程中数据只可插入无法删除的特性需求&#xff1b;登录日志、修改日志…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)

Aspose.PDF 限制绕过方案&#xff1a;Java 字节码技术实战分享&#xff08;仅供学习&#xff09; 一、Aspose.PDF 简介二、说明&#xff08;⚠️仅供学习与研究使用&#xff09;三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

9-Oracle 23 ai Vector Search 特性 知识准备

很多小伙伴是不是参加了 免费认证课程&#xff08;限时至2025/5/15&#xff09; Oracle AI Vector Search 1Z0-184-25考试&#xff0c;都顺利拿到certified了没。 各行各业的AI 大模型的到来&#xff0c;传统的数据库中的SQL还能不能打&#xff0c;结构化和非结构的话数据如何和…...

区块链技术概述

区块链技术是一种去中心化、分布式账本技术&#xff0c;通过密码学、共识机制和智能合约等核心组件&#xff0c;实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点&#xff1a;数据存储在网络中的多个节点&#xff08;计算机&#xff09;&#xff0c;而非…...

如何配置一个sql server使得其它用户可以通过excel odbc获取数据

要让其他用户通过 Excel 使用 ODBC 连接到 SQL Server 获取数据&#xff0c;你需要完成以下配置步骤&#xff1a; ✅ 一、在 SQL Server 端配置&#xff08;服务器设置&#xff09; 1. 启用 TCP/IP 协议 打开 “SQL Server 配置管理器”。导航到&#xff1a;SQL Server 网络配…...

React从基础入门到高级实战:React 实战项目 - 项目五:微前端与模块化架构

React 实战项目&#xff1a;微前端与模块化架构 欢迎来到 React 开发教程专栏 的第 30 篇&#xff01;在前 29 篇文章中&#xff0c;我们从 React 的基础概念逐步深入到高级技巧&#xff0c;涵盖了组件设计、状态管理、路由配置、性能优化和企业级应用等核心内容。这一次&…...

C++--string的模拟实现

一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现&#xff0c;其目的是加强对string的底层了解&#xff0c;以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量&#xff0c;…...