PyTorch使用教程(6)一文讲清楚torch.nn和torch.nn.functional的区别
torch.nn
和 torch.nn.functional
在 PyTorch 中都是用于构建神经网络的重要组件,但它们在设计理念、使用方式和功能上存在一些显著的区别。以下是关于这两个模块的详细区别:
1. 继承方式与结构
torch.nn
- torch.nn 中的模块大多数是通过继承 torch.nn.Module 类来实现的。这些模块都是 Python 类,包含了神经网络的各种层(如卷积层、全连接层等)和其他组件(如损失函数、优化器等)。
- torch.nn 中的模块可以包含可训练参数,如权重和偏置,这些参数在训练过程中会被优化。
torch.nn.functional
- torch.nn.functional 中的函数是直接调用的,无需实例化。这些函数通常用于执行各种非线性操作、损失函数计算、激活函数应用等。
- torch.nn.functional 中的函数没有可训练参数,它们只是执行操作并返回结果。
2. 实现方式与调用方式
torch.nn
- torch.nn 中的模块是基于面向对象的方法实现的。开发者需要创建类的实例,并在类的 forward 方法中定义数据的前向传播路径。
- torch.nn 中的模块通常需要先创建模型实例,再将输入数据传入模型中进行前向计算。
torch.nn.functional
- torch.nn.functional 中的函数是基于函数式编程实现的。它们提供了灵活的接口,允许开发者以函数调用的方式轻松定制和扩展神经网络架构。
- torch.nn.functional 中的函数可以直接调用,只需要将输入数据传入函数中即可进行前向计算。
3. 使用场景与优势
torch.nn
- torch.nn 更适合用于定义有状态的模块,如包含可训练参数的层。
- 当定义具有变量参数的层时(如卷积层、全连接层等),torch.nn 会帮助初始化好变量,并且模型类本身就是 nn.Module 的实例,看起来会更加协调统一。
- torch.nn 可以结合 nn.Sequential 来简化模型的构建过程。
torch.nn.functional
- torch.nn.functional 中的函数相比 torch.nn 更偏底层,封装性不高但透明度很高。开发者可以在其基础上定义出自己想要的功能。
- 使用 torch.nn.functional 可以更方便地进行函数组合、复用等操作,适合那些喜欢使用函数式编程风格的开发者。当激活函数只需要在前向传播中使用时,使用 torch.nn.functional 中的激活函数会更加简洁。
4. 权重与参数管理
torch.nn
- torch.nn 中的模块会自动管理权重和偏置等参数,这些参数可以通过 model.parameters() 方法获取,并用于优化算法的训练。
torch.nn.functional
- torch.nn.functional 中的函数不直接管理权重和偏置等参数。如果需要使用这些参数,开发者需要在函数外部定义并初始化它们,然后将它们作为参数传入函数中。
5.举例说明
例子1:定义卷积层
使用 torch.nn
import torch.nn as nnclass MyConvNet(nn.Module):def __init__(self):super(MyConvNet, self).__init__()self.conv1 = nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=1, padding=1)def forward(self, x):x = self.conv1(x)return x# 实例化模型
model = MyConvNet()# 传入输入数据
input_tensor = torch.randn(1, 1, 32, 32)
output_tensor = model(input_tensor)
使用 torch.nn.functional
import torch.nn.functional as Fdef my_conv_net(input_tensor, weight, bias=None):output_tensor = F.conv2d(input_tensor, weight, bias=bias, stride=1, padding=1)return output_tensor# 定义卷积核的权重和偏置
weight = nn.Parameter(torch.randn(16, 1, 3, 3))
bias = nn.Parameter(torch.randn(16))# 传入输入数据
input_tensor = torch.randn(1, 1, 32, 32)
output_tensor = my_conv_net(input_tensor, weight, bias)
在这个例子中,使用 torch.nn 定义了一个包含卷积层的模型类,而使用 torch.nn.functional 则是通过函数直接进行卷积操作。注意在使用 torch.nn.functional 时,需要手动定义和传递卷积核的权重和偏置。
例子2:应用激活函数
使用 torch.nn
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.relu = nn.ReLU()def forward(self, x):x = self.relu(x)return x# 实例化模型
model = MyModel()# 传入输入数据
input_tensor = torch.randn(1, 10)
output_tensor = model(input_tensor)
使用 torch.nn.functional
import torch.nn.functional as Fdef my_model(input_tensor):output_tensor = F.relu(input_tensor)return output_tensor# 传入输入数据
input_tensor = torch.randn(1, 10)
output_tensor = my_model(input_tensor)
在这个例子中,使用 torch.nn 定义了一个包含 ReLU 激活函数的模型类,而使用 torch.nn.functional 则是通过函数直接应用 ReLU 激活函数。
例子3:定义和计算损失
使用 torch.nn
import torch.nn as nnclass MyModel(nn.Module):def __init__(self):super(MyModel, self).__init__()self.linear = nn.Linear(10, 2)def forward(self, x):x = self.linear(x)return x# 实例化模型
model = MyModel()# 定义损失函数
criterion = nn.CrossEntropyLoss()# 传入输入数据和标签
input_tensor = torch.randn(1, 10)
target = torch.tensor()# 前向传播和计算损失
output_tensor = model(input_tensor)
loss = criterion(output_tensor, target)
使用 torch.nn.functional
import torch.nn.functional as Fdef my_model(input_tensor):output_tensor = torch.matmul(input_tensor, weight.t()) + biasreturn output_tensor# 定义权重和偏置
weight = nn.Parameter(torch.randn(10, 2))
bias = nn.Parameter(torch.randn(2))# 定义损失函数
criterion = nn.CrossEntropyLoss()# 传入输入数据和标签
input_tensor = torch.randn(1, 10)
target = torch.tensor()# 前向传播和计算损失
output_tensor = my_model(input_tensor)
loss = criterion(output_tensor, target)
在这个例子中,使用 torch.nn 定义了一个包含全连接层的模型类,并使用了 torch.nn 中的损失函数来计算损失。而使用 torch.nn.functional 则是通过函数直接进行线性变换,并使用 torch.nn 中的损失函数来计算损失。注意在使用 torch.nn.functional 时,需要手动定义和传递权重和偏置。
6. 小结
torch.nn 和 torch.nn.functional 在定义神经网络组件、应用激活函数和计算损失等方面存在显著的区别。torch.nn 提供了一种面向对象的方式来构建模型,而 torch.nn.functional 则提供了一种更灵活、更函数式的方式来执行相同的操作。
相关文章:

PyTorch使用教程(6)一文讲清楚torch.nn和torch.nn.functional的区别
torch.nn 和 torch.nn.functional 在 PyTorch 中都是用于构建神经网络的重要组件,但它们在设计理念、使用方式和功能上存在一些显著的区别。以下是关于这两个模块的详细区别: 1. 继承方式与结构 torch.nn torch.nn 中的模块大多数是通过继承 torch.nn…...

React的应用级框架推荐——Next、Modern、Blitz等,快速搭建React项目
在 React 企业级应用开发中,Next.js、Modern.js 和 Blitz 是三个常见的框架,它们提供了不同的特性和功能,旨在简化开发流程并提高应用的性能和扩展性。以下是它们的详解与比较: Next、Modern、Blitz 1. Next.js Next.js 是由 Ve…...

基于GRU实现股价多变量时间序列预测(PyTorch版)
前言 系列专栏:【深度学习:算法项目实战】✨︎ 涉及医疗健康、财经金融、商业零售、食品饮料、运动健身、交通运输、环境科学、社交媒体以及文本和图像处理等诸多领域,讨论了各种复杂的深度神经网络思想,如卷积神经网络、循环神经网络、生成对抗网络、门控循环单元、长短期记…...

Java创建对象有几种方式?
大家好,我是锋哥。今天分享关于【Java创建对象有几种方式?】面试题。希望对大家有帮助; Java创建对象有几种方式? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在Java中,创建对象主要有以下几种方式&…...

Vue3初学之Element Plus Dialog对话框,Message组件,MessageBox组件
Dialog的使用: 控制弹窗的显示和隐藏 <template><div><el-button click"dialogVisible true">打开弹窗</el-button><el-dialogv-model"dialogVisible"title"提示"width"30%":before-close&qu…...

基于Python机器学习的双色球数据分析与预测
python统计分析2003-2024年所有的中奖记录,通过人工智能机器学习预测双色球,个人意见,仅供参考. 声明:双色球具有随机性,任何工具无法预测。本文章仅作为技术交流,提供学习参考。本文所涉及的代码均为python之机器学习的代码。双色球为公益事…...

微软Win10 RP 19045.5435(KB5050081)预览版发布!
系统之家1月20日最新报道,微软面向Release Preview频道的Windows Insider项目成员,发布了适用于Windows10 22H2版本的KB5050081更新,更新后系统版本号将升至19045.5435。本次更新增加了对GB18030-2022标准的支持,同时新版日历将为…...

使用 Parcel 和 NPM 脚本进行打包
使用 Parcel 和 NPM 脚本进行打包 Parcel Parcel 是一个零配置的网页应用程序打包工具,主要用于快速构建现代 JavaScript 应用。 我们可以使用npm直接安装它 npm install --save-dev parcel //这将把 Parcel 添加到 devDependencies 中,表明它是一个…...
HTML<center>标签
HTML5不支持。 <center>标签在HTML4中用于使文本居中对齐。 用什么来代替呢? 例子 居中对齐文本(使用 CSS): <html> <head> <style> h1 {text-align: center;} p {text-align: center;} div {text-a…...
LatentSync本地部署教程:基于音频精准生成唇形高度同步视频
LatentSync 是字节跳动联合北京交通大学推出的一个端到端的唇形同步框架,以下是对其的详细介绍: 一、技术基础 LatentSync 基于音频条件的潜在扩散模型,无需任何中间的 3D 表示或 2D 特征点。它利用了 Stable Diffusion 的强大生成能力&…...
ES使用笔记,聚合分组后再分页,探索性能优化问题
之前分享过一篇文档,也是关于聚合分组后再分页的具体实现,当时只想着怎么实现,没有去主要探索ES性能优化的问题, 这篇我会换一种方式,重新实现这个聚合分组后再分页的操作,并且指出能优化性能点,可能我们再使用的时候,并没有注意过的点,希望对你有帮助!大佬的话,请忽略! 上源码…...
VUE3 vite下的axios跨域
在使用 Vite 开发时,如果你的前端项目需要请求后端 API,且后端和前端不在同一个域上,可能会遇到跨域问题。跨域是指浏览器出于安全考虑,阻止了前端网页向不同源(域名、协议、端口)发送请求。 解决跨域问题…...
Mac下安装ADB环境的三种方式
参考网址: Mac下安装ADB环境的三种方式-百度开发者中心 ADB,即Android Debug Bridge,是Android开发过程中不可或缺的工具。通过ADB,开发者可以在计算机上管理设备或模拟器上的应用,提供了丰富的调试功能。然而&#…...
在Vue中,<img> 标签的 src 值
1. 直接指定 src 的值(适用于网络图片) 如果你使用的是网络图片(即图片的URL是完整的HTTP或HTTPS链接),可以直接指定 src 的值: vue 复制 <template><div><img src"https://exampl…...
Kotlin基础知识学习(三)
函数使用 基本用法 函数声明变化 如果函数是公开的,则public关键字可以省略。用fun关键字表示函数的定义。如果函数没有返回值可以不用声明。如果函数表示重载,直接在fun同一行用override修饰。函数参数格式是变量名:变量类型。函数参数允…...

渗透测试之XEE[外部实体注入]漏洞 原理 攻击手法 xml语言结构 防御手法
目录 原理 XML语言解释 什么是xml语言: 以PHP举例xml外部实体注入 XML语言结构 面试题目 如何寻找xxe漏洞 XEE漏洞修复域防御 提高版本 代码修复 php java python 手动黑名单过滤(不推荐) 一篇文章带你深入理解漏洞之 XXE 漏洞 - 先知社区 原理 XXE&…...

店铺营业状态设置(day05)
Redis入门 Redis简介 Redis 是一个基于内存的 key-value 结构数据库。Redis 是互联网技术领域使用最为广泛的存储中间件。 Redis是一个基于内存的 key-value 结构数据库。 主要特点: 1、基于内存存储,读写性能高 2、适合存储热点数据(热点…...

游戏引擎学习第84天
仓库:https://gitee.com/mrxiao_com/2d_game_2 我们正在试图弄清楚如何完成我们的世界构建 上周做了一些偏离计划的工作,开发了一个小型的背景位图合成工具,这个工具做得还不错,虽然是临时拼凑的,但验证了背景构建的思路。这个过…...

快手SDK接入错误处理经验总结(WebGL方案)
1、打包时提示Assets\WebGLTemplates\ks路径下未找到Index.html文件错误 处理方法:直接使用Unity默认模板下的Index.html文件即可 文件所在路径:Unity安装路径\Editor\Data\PlaybackEngines\WebGLSupport\BuildTools\WebGLTemplates\Default 参考图&a…...

C语言 for 循环:解谜数学,玩转生活!
放在最前面的 🎈 🎈 我的CSDN主页:OTWOL的主页,欢迎!!!👋🏼👋🏼 🎉🎉我的C语言初阶合集:C语言初阶合集,希望能…...
RestClient
什么是RestClient RestClient 是 Elasticsearch 官方提供的 Java 低级 REST 客户端,它允许HTTP与Elasticsearch 集群通信,而无需处理 JSON 序列化/反序列化等底层细节。它是 Elasticsearch Java API 客户端的基础。 RestClient 主要特点 轻量级ÿ…...

接口测试中缓存处理策略
在接口测试中,缓存处理策略是一个关键环节,直接影响测试结果的准确性和可靠性。合理的缓存处理策略能够确保测试环境的一致性,避免因缓存数据导致的测试偏差。以下是接口测试中常见的缓存处理策略及其详细说明: 一、缓存处理的核…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...

理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...

高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
汇编常见指令
汇编常见指令 一、数据传送指令 指令功能示例说明MOV数据传送MOV EAX, 10将立即数 10 送入 EAXMOV [EBX], EAX将 EAX 值存入 EBX 指向的内存LEA加载有效地址LEA EAX, [EBX4]将 EBX4 的地址存入 EAX(不访问内存)XCHG交换数据XCHG EAX, EBX交换 EAX 和 EB…...

k8s业务程序联调工具-KtConnect
概述 原理 工具作用是建立了一个从本地到集群的单向VPN,根据VPN原理,打通两个内网必然需要借助一个公共中继节点,ktconnect工具巧妙的利用k8s原生的portforward能力,简化了建立连接的过程,apiserver间接起到了中继节…...

C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...