机器学习-核函数(Kernel Function)
核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实现高维映射,从而简化计算。
核函数的作用
-
处理非线性问题:很多机器学习算法(如支持向量机)在原始特征空间中仅能处理线性可分数据。通过核函数,可以将数据映射到更高的特征空间,使得即使在原始空间中非线性可分的数据,也可以在线性可分的高维空间中找到分离超平面。
-
提高模型的灵活性:通过选择不同的核函数,模型可以适应不同类型的数据分布,从而优化分类、回归等任务的性能。
-
避免维度灾难:直接进行高维计算可能会带来计算复杂度高和数据稀疏的问题。核函数通过计算内积的方式在更低的维度上完成挑战,从而减轻了这一问题。
常用的核函数
- 线性核:
于线性可分数据。
- 多项式核:
其中 c是常数,d是多项式的度数。
- 高斯(RBF)核:
高斯核非常常用,能够处理许多非线性问题。
- Sigmoid核:
适用于神经网络的某些模型。
这些核函数在选择和应用时可以根据具体问题的需要而定。不同的核函数对模型的表现可以产生显著影响,因此在实践中往往需要进行选择和调优。
例子:使用高斯 (RBF) 核的支持向量机
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasets
from sklearn.model_selection import train_test_split
from sklearn.svm import SVC
from sklearn.metrics import classification_report, confusion_matrix # 生成一个分类数据集
X, y = datasets.make_moons(n_samples=100, noise=0.1, random_state=42) # 分割数据集为训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 创建高斯核支持向量机模型
svm_rbf = SVC(kernel='rbf', gamma='scale') # 训练模型
svm_rbf.fit(X_train, y_train) # 对测试集进行预测
y_pred = svm_rbf.predict(X_test) # 输出分类报告
print("Confusion Matrix:\n", confusion_matrix(y_test, y_pred))
print("\nClassification Report:\n", classification_report(y_test, y_pred)) # 可视化结果
plt.scatter(X_test[:, 0], X_test[:, 1], c=y_pred, cmap='coolwarm', s=50, edgecolor='k')
plt.title('SVM with RBF Kernel')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
示例 2: 使用线性核的支持向量机
# 生成一个线性可分的数据集
X_linear, y_linear = datasets.make_blobs(n_samples=100, centers=2, random_state=6) # 分割数据集为训练集和测试集
X_train_linear, X_test_linear, y_train_linear, y_test_linear = train_test_split(X_linear, y_linear, test_size=0.3, random_state=42) # 创建线性核支持向量机模型
svm_linear = SVC(kernel='linear') # 训练模型
svm_linear.fit(X_train_linear, y_train_linear) # 对测试集进行预测
y_pred_linear = svm_linear.predict(X_test_linear) # 输出分类报告
print("\nConfusion Matrix (Linear SVM):\n", confusion_matrix(y_test_linear, y_pred_linear))
print("\nClassification Report (Linear SVM):\n", classification_report(y_test_linear, y_pred_linear)) # 可视化结果
plt.scatter(X_test_linear[:, 0], X_test_linear[:, 1], c=y_pred_linear, cmap='coolwarm', s=50, edgecolor='k')
plt.title('SVM with Linear Kernel')
plt.xlabel('Feature 1')
plt.ylabel('Feature 2')
plt.show()
相关文章:

机器学习-核函数(Kernel Function)
核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实…...
计算最接近的数
计算最接近的数 真题目录: 点击去查看 E B卷 100分题型 题目描述 给定一个数组X和正整数K,请找出使表达式: X[i] - X[i 1] - … - X[i K - 1] 结果最接近于数组中位数的下标 i ,如果有多个 i 满足条件,请返回最大的 i. 其中&…...
【QNX】QNX侧查看内存信息的方法
在QNX实时操作系统中,🉑查看内存信息的方法有showmem、pidin、top以及hogs等👇🏻。 ① showmem 🦋🦋🦋showmem可用于显示进程的内存使用情况。 🦋🦋🦋通过…...
逐笔成交逐笔委托Level2高频数据下载和分析:20250121
逐笔成交逐笔委托下载 链接: https://pan.baidu.com/s/15NI2zLXYiczrUMQtwHgUrg?pwdbeiu 提取码: beiu Level2逐笔成交逐笔委托数据分享下载 通过Level2的逐笔成交与委托记录,这种高精度的毫秒级数据能够洞察诸多重要信息,包括庄家目的、误导性行为&am…...

AutoSar架构学习笔记
1.AUTOSAR(Automotive Open System Architecture,汽车开放系统架构)是一个针对汽车行业的软件架构标准,旨在提升汽车电子系统的模块化、可扩展性、可重用性和互操作性。AUTOSAR的目标是为汽车电子控制单元(ECU…...

2024年智慧消防一体化安全管控年度回顾与2025年预测
随着科技的飞速发展,智慧营区一体化安全管控在2024年取得了显著进展,同时也为2025年的发展奠定了坚实基础。 2024年年度回顾 政策支持力度持续加大:国家对消防安全的重视程度不断提高,出台了一系列涵盖技术创新、市场应用、人才培…...
基于单片机的智能台灯设计
摘要: 方向和亮度,采用的是手动调节。而对于儿童来说,他们通常不知道如何调整以及调整到何种程度。本文设计了一款智能台灯,当有人的 台灯是用于阅读学习而设计使用的灯,一般台灯用的灯泡是白炽灯、节能灯泡以及市面上流行的护眼台灯,可以调节高度、光照的时候,可以根据…...
HJ108 求最小公倍数(Java版本)
一、试题地址 求最小公倍数_牛客题霸_牛客网 二、试题描述 描述 对于给定的两个正整数 a,b,它们的最小公倍数 lcm(a,b) 是指能同时被 a 和 b 整除的最小正整数。 求解 lcm(a,b)。 输入描述: 在一行上输入两个整数 a,b(1≦a,b≦105)。 输出描述…...

使用tritonserver完成clip-vit-large-patch14图像特征提取模型的工程化。
1、关于clip-vit-large-patch14模型 关于openapi开源的clip-vit-large-patch14模型的特征提取,可以参考之前的文章:Elasticsearch向量检索需要的数据集以及768维向量生成这篇文章详细介绍了模型的下载地址、使用方式、测试脚本,可以让你一步…...

实操演练第003讲-数据通途:客户端连接SQL Server的完美攻略
SQL Server简介 基本概念 SQL Server是由微软公司开发的关系型数据库管理系统。它基于SQL(Structured Query Language,结构化查询语言)来管理和操作数据。SQL Server可以存储大量结构化数据,如客户信息、订单记录、库存数据等&a…...
golang接口
1.概念 golang接口是一个动态类型和动态值的集合,定义了对象的行为,不指定实现。只要一个类型定义了接口全部的方法,就可被认为是实现接口 **动态类型:**实现接口的具体数据类型 **动态值:**实现接口的数据的值或者引…...

LeetCode:37. 解数独
跟着carl学算法,本系列博客仅做个人记录,建议大家都去看carl本人的博客,写的真的很好的! 代码随想录 LeetCode:37. 解数独 编写一个程序,通过填充空格来解决数独问题。 数独的解法需 遵循如下规则ÿ…...

数据结构与算法之递归: LeetCode 37. 解数独 (Ts版)
解数独 https://leetcode.cn/problems/sudoku-solver/description/ 描述 编写一个程序,通过填充空格来解决数独问题数独的解法需 遵循如下规则: 数字 1-9 在每一行只能出现一次数字 1-9 在每一列只能出现一次数字 1-9 在每一个以粗实线分隔的 3x3 宫内…...

【氮化镓】香港科技大学陈Kevin-单片集成GaN比较器
一、引言(Introduction) GaN HEMT的重要性 文章开篇便强调了氮化镓(GaN)高电子迁移率晶体管(HEMT)在下一代功率转换系统中的巨大潜力。GaN HEMT具备高开关频率、低导通电阻、高击穿电压以及宽工作温度范围等优势,使其成为功率电子领域的热门研究对象。这些特性使得GaN…...
axios的使用总结
一、Axios 简介 Axios 是一个基于 Promise 的 HTTP 客户端,用于浏览器和 Node.js。在 Vue 项目中,它主要用于发送 HTTP 请求来获取数据(如从 API 获取数据)或者提交数据(如用户登录、注册等表单数据)。 二…...

革新未来:高效智能数字人技术引领多元化应用
随着科技的不断进步,数字人技术已逐渐成为企业数字化转型中的重要工具。数字人不仅能够优化客户体验,还可以显著提升企业运营效率。本文将详细介绍一种高性能、高质量、低延迟、快速响应以及安全稳定的数字人技术方案,帮助企业在多元化场景中…...

使用批处理文件清除系统垃圾
第一步:打开记事本,里面的命令如下 echo off echo 正在清理临时文件,请稍候...:: 清理系统临时文件 echo 清理系统临时文件... del /q /f /s "%TEMP%\*.*" del /q /f /s "%WINDIR%\Temp\*.*" rd /s /q "%WINDIR%\T…...

总结5..
#include<stdio.h> struct nb {//结构体列队 int x, y;//x为横坐标,y为纵坐标 int s, f;//s为步数,//f为方向 }link[850100]; int n, m, x, y, p, q, f; int hard 1, tail 1; int a[52][52], b[52][52], book[52][52][91]; int main() { …...
Java 在包管理与模块化中的优势:与其他开发语言的比较
在开发复杂的、规模庞大的软件系统时,包管理和模块化设计起着至关重要的作用。它们不仅决定了代码的组织和可维护性,还直接影响到团队协作效率、扩展性和性能。在众多编程语言中,Java 凭借其成熟的生态系统、强类型系统和标准化的包管理机制&…...

LLMs(大型语言模型)的多智能体:Auto-GPT
LLMs(大型语言模型)的多智能体:Auto-GPT 是指在一个系统中集成多个具有不同能力、角色和任务的智能体,这些智能体能够相互协作、沟通和交互,以共同完成复杂的任务或解决复杂的问题。每个智能体都可以被视为一个独立的实体,具有自己的策略、目标和知识库,通过相互之间的…...
浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)
✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义(Task Definition&…...
云计算——弹性云计算器(ECS)
弹性云服务器:ECS 概述 云计算重构了ICT系统,云计算平台厂商推出使得厂家能够主要关注应用管理而非平台管理的云平台,包含如下主要概念。 ECS(Elastic Cloud Server):即弹性云服务器,是云计算…...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
【AI学习】三、AI算法中的向量
在人工智能(AI)算法中,向量(Vector)是一种将现实世界中的数据(如图像、文本、音频等)转化为计算机可处理的数值型特征表示的工具。它是连接人类认知(如语义、视觉特征)与…...
什么是EULA和DPA
文章目录 EULA(End User License Agreement)DPA(Data Protection Agreement)一、定义与背景二、核心内容三、法律效力与责任四、实际应用与意义 EULA(End User License Agreement) 定义: EULA即…...

《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
OD 算法题 B卷【正整数到Excel编号之间的转换】
文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的:a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...
区块链技术概述
区块链技术是一种去中心化、分布式账本技术,通过密码学、共识机制和智能合约等核心组件,实现数据不可篡改、透明可追溯的系统。 一、核心技术 1. 去中心化 特点:数据存储在网络中的多个节点(计算机),而非…...