线性规划:机器学习中的优化利器
一、线性规划的基本概念
线性规划(Linear Programming, LP)是运筹学中数学规划的一个重要分支,用于在一组线性不等式的约束条件下,找到线性目标函数的最大值或最小值。其问题可以表述为:
在一组线性约束条件 s.t.(subject to)下,求解线性目标函数 f(x) 的最优解(最大值或最小值)。这里的 s.t. 表示“受限于”(subject to),而线性目标函数和约束条件均为线性函数。
例如,一个常见的线性规划问题可以表示为:
最大化 z = 3x1 - x2 - x3
约束条件为:
x1 - 2x2 + x3 ≤ 11
-4x1 + x2 + 2x3 ≥ 3
-2x1 + x3 = 1
x1, x2, x3 ≥ 0
这是一个简单的线性规划问题,其中 z 是目标函数,约束条件为一系列的线性不等式和等式。
二、线性规划在机器学习中的应用
线性规划在机器学习中的应用广泛且深入,涵盖了从线性模型到复杂的优化问题。以下是几个重要的应用场景:
1. 线性模型
线性模型(如线性回归、逻辑回归)假设输入和输出之间存在线性关系,其目标函数和约束条件都是线性的。通过最小化目标函数(如均方误差、交叉熵损失等),线性模型可以找到最佳的参数,使得模型预测的结果与实际数据之间的误差最小。
线性回归模型的目标函数通常是最小化均方误差(MSE),其表达式为:
MSE = Σ(yi - ŷi)^2 / n
其中 yi 是实际值,ŷi 是预测值,n 是样本数量。这是一个典型的线性规划问题,因为目标函数和约束条件(如果有的话)都是线性的。
逻辑回归模型则用于分类问题,其目标函数是最小化交叉熵损失函数,同样也是一个线性规划问题。
2. 优化问题
在机器学习中,许多算法都涉及到优化问题,线性规划提供了一种在给定约束条件下优化目标函数的工具。例如,支持向量机(SVM)的求解过程可以看作是一个线性规划问题。SVM的目标是找到一个分类超平面,使得不同类别之间的间隔最大化。
SVM的优化问题可以表示为:
最大化 Σαi - 1/2 ΣΣ αiαjyiyjK(xi, xj)
约束条件为:
Σαiyi = 0
0 ≤ αi ≤ C, i = 1, ..., n
其中 αi 是拉格朗日乘子,yi 是样本的类别标签,K(xi, xj) 是核函数,C 是正则化参数。这是一个二次规划问题,但在某些情况下可以简化为线性规划问题。
3. 资源分配与决策支持
在机器学习的实际应用中,线性规划可以用于资源分配和决策支持。例如,在推荐系统中,可以根据用户的偏好和物品的特性,利用线性规划来优化推荐策略,提高推荐效果。在供应链管理中,可以利用线性规划来优化库存水平、生产计划和物流,降低成本并提高效率。
假设一个零售公司有n个仓库和m个零售店,需要将仓库中的货物全部运输到零售店中。每个仓库的货物量和运输成本都是已知的,此外每个零售店有最低的货物需求。这个问题可以表示为一个线性规划问题,目标是最小化运输成本,同时满足零售店的需求。
4. 投资组合优化
在金融领域,线性规划可以帮助投资者在风险和回报之间找到平衡,构建最优的投资组合。投资组合优化问题可以表示为:
最大化 Σ(rixi) - λΣΣσijxixj
约束条件为:
Σxi = 1
xi ≥ 0, i = 1, ..., n
其中 ri 是资产的预期回报率,σij 是资产之间的协方差,λ 是风险厌恶系数,xi 是资产i在投资组合中的权重。这是一个典型的线性规划问题,目标是在给定的风险水平下最大化投资组合的预期回报。
三、线性规划在机器学习中的实践案例
以下是一个具体的线性规划在机器学习中的实践案例,展示了如何使用Python的Scipy工具包求解一个实际的线性规划问题。
假设有四个城市s、u、v、t,城市之间有道路相连,每条道路每天最多能够运送货物的吨数是已知的。现在需要设计一个调度方案,使得从s到t一天之内能够运送的货物越多越好。
这个问题可以表示为一个线性规划问题,其中决策变量是每条道路上运输的货物量,目标函数是最大化从s到t的运输量,约束条件是每条道路的最大运输量和城市的货物需求。
以下是使用Python的Scipy工具包求解这个问题的代码:
python复制代码
from scipy.optimize import linprog | |
# 最小化目标的系数向量(注意:这里是求最大化,所以系数取负) | |
c = [0, 0, 0, -1, -1] | |
# 等式条件的系数 | |
A_eq = [[1, 0, -1, -1, 0], [0, 1, 1, 0, -1]] | |
# 等式条件的值 | |
b_eq = [0, 0] | |
# 变量定义域 | |
x1_bounds = [0, 5] | |
x2_bounds = [0, 8] | |
x3_bounds = [0, 1] | |
x4_bounds = [0, 6] | |
x5_bounds = [0, 2] | |
# 求解线性规划问题 | |
res = linprog(c=c, A_ub=None, b_ub=None, A_eq=A_eq, b_eq=b_eq, | |
bounds=[x1_bounds, x2_bounds, x3_bounds, x4_bounds, x5_bounds], | |
method='revised simplex') | |
print(res) |
这段代码使用了Scipy的linprog函数来求解线性规划问题。其中c是目标函数的系数向量(因为Scipy的linprog默认是求解最小化问题,所以这里取负值),A_eq和b_eq是等式约束的系数和值,bounds是变量的定义域。
求解结果会给出最优解和对应的目标函数值。在这个例子中,最优解表示了每条道路上应该运输的货物量,使得从s到t的运输量最大化。
线性规划在机器学习中的应用广泛且深入,涵盖了从线性模型到复杂的优化问题。通过最小化目标函数和满足约束条件,线性规划提供了一种在给定条件下找到最优解的有效方法。在机器学习中,线性规划不仅可以用于求解线性模型和优化问题,还可以用于资源分配和决策支持等实际应用场景。
随着计算机技术的发展和算法的不断优化,线性规划在机器学习中的应用将会越来越广泛。无论是在学术研究还是工业应用中,线性规划都将成为机器学习领域的重要工具之一。
相关文章:

线性规划:机器学习中的优化利器
一、线性规划的基本概念 线性规划(Linear Programming, LP)是运筹学中数学规划的一个重要分支,用于在一组线性不等式的约束条件下,找到线性目标函数的最大值或最小值。其问题可以表述为: 在一组线性约束条件 s.t.&am…...
Ubuntu开发中的问题
1.退出anaconda指令:conda deactivate 2.Linux系列:一打开终端就默认进入conda的base环境,取消方法 在终端输入conda config --show,会显示所有的配置信息,然后利用conda config --set来修改此配置: conda config --se…...
MAC 地址转换为标准大写格式
// ConvertToStandardMac 将 MAC 地址转换为标准格式,确保每个字节都是两位,并且字母是大写的 func ConvertToStandardMac(mac string) (string, error) { // 分割 MAC 地址的每一部分 parts : strings.Split(mac, ":") // 确保每部分是两…...

使用插件SlideVerify实现滑块验证
作者gitee地址:https://gitee.com/monoplasty/vue-monoplasty-slide-verify 使用步骤: 1、安装插件 npm install --save vue-monoplasty-slide-verify 2、在main.js中进行配置 import SlideVerify from vue-monoplasty-slide-verify; Vue.use(SlideV…...
深入探索 Nginx 的高级用法:解锁 Web 服务器的强大潜能
在当下互联网技术飞速发展的浪潮中,Nginx 凭借其轻量级、高性能的特性,在 Web 服务器和反向代理服务器领域脱颖而出,成为众多开发者和运维工程师的得力工具。它不仅能高效处理静态资源,在负载均衡、反向代理等方面也表现出色。然而…...
(01)搭建开发环境
1.安装虚拟机软件 VMware Workstation Pro 17 2.虚拟机安装ubuntu20.4系统 3.安装VMtools工具 4.安装vim编辑器 sudo apt install vim 4.安装SSH服务 选择下载源为:http://mirrors.aliyun.com/ubuntu在线安装:sudo apt-get install openssh-serv…...
Win11桌面右键刷新选项在二级界面的修正方法
win10已经被弃用了,现在的win11在桌面右键时,“刷新”按钮在二级界面。除此以外,在资源管理器中浏览文件的时候,很多其他选项也都被放在了二级界面,非常不方便。接下来介绍一个把右键菜单栏中的所有选项都显示在一级界…...

配电室防静电地板通常用哪种
配电室是指带有低压负荷的室内配电场所,包含变压器、配电柜、开关设备等,主要为低压用户配送电能。为防止设备故障、避免火灾爆炸、保护人员安全等均会安装防静电地板。那么配电室防静电地板通常用哪种? 一、全钢防静电地板 1. 全钢三聚氰胺…...

【重庆市乡镇界】面图层shp格式arcgis数据乡镇名称和编码wgs84坐标无偏移内容测评
标题中的“最新重庆市乡镇界面图层shp格式arcgis数据乡镇名称和编码wgs84坐标无偏移最新”指的是一个地理信息系统(GIS)的数据集,特别设计用于ArcGIS软件。这个数据集包含了重庆市所有乡镇的边界信息,以Shapefile(.shp…...

68,[8] BUUCTF WEB [RoarCTF 2019]Simple Upload(未写完)
<?php // 声明命名空间,遵循 PSR-4 自动加载规范,命名空间为 Home\Controller namespace Home\Controller;// 导入 Think\Controller 类,以便扩展该类 use Think\Controller;// 定义 IndexController 类,继承自 Think\Control…...

Windows电脑桌面记录日程安排的提醒软件
在快节奏的现代生活中,工作效率成为了衡量个人能力的重要标准之一。然而,日常办公中常常会遇到各种琐事和任务,如果没有合理安排日程,很容易陷入混乱,导致效率低下。因此,做好日程安排对于日常工作至关重要…...
TiDB与Oracle:数据库之争,谁能更胜一筹?
TiDB与Oracle:数据库之争,谁能更胜一筹? 最近有很多朋友在讨论数据库的选择问题,尤其是在面对大数据、分布式系统时。作为两款在企业级数据库中非常受欢迎的产品,TiDB和Oracle常常被拿来对比。TiDB 是一款开源分布式数…...

USART_串口通讯中断案例(HAL库实现)
引言 本次,继续对前面寄存器实现的串口通讯中断案例使用HAL库进行二次实现,因此这里会省略一些重复内容,如果大家不清楚的话请参考下面链接:USART_串口通讯中断案例(一)(寄存器实现)…...

【MySQL】存储引擎有哪些?区别是什么?
频率难度60%⭐⭐⭐⭐ 这个问题其实难度并不是很大,只是涉及到的相关知识比较繁杂,比如事务、锁机制等等,都和存储引擎有关系。有时还会根据场景选择不同的存储引擎。 下面笔者将会根据几个部分尽可能地讲清楚 MySQL 中的存储引擎࿰…...

[OpenGL]实现屏幕空间环境光遮蔽(Screen-Space Ambient Occlusion, SSAO)
一、简介 本文介绍了 屏幕空间环境光遮蔽(Screen-Space Ambient Occlusion, SSAO) 的基本概念,实现流程和简单的代码实现。实现 SSAO 时使用到了 OpenGL 中的延迟着色 (Deferred shading)技术。 按照本文代码实现后,可以实现以下…...

linux-NFS网络共享存储服务配置
1.NFS服务原理 NFS会经常用到,用于在网络上共享存储,这样讲,你对NFS可能不太了解,举一个例子, 加入有三台机器A,B,C,它们需要访问同一个目录,目录中都是图片,传统的做法是把这些 图…...

w-form-select.vue(自定义下拉框组件)
文章目录 1、w-form-select.vue 组件中每个属性的含义2、实例3、源代码 1、w-form-select.vue 组件中每个属性的含义 好的,我们来详细解释 w-form-select.vue 组件中每个属性的含义,并用表格列出它们是否与后端字段直接相关: 属性解释表格&…...
ovs实现lb负载均衡
负载均衡定义 负载均衡器的实现原理是通过硬件或软件设备将客户端访问流量根据转发策略分发到多个服务器或设备上,以确保系统的负载均衡。常见的实现方式包括: 二层负载均衡:使用虚拟MAC地址方式,根据OSI模型的二层进行负载均…...

机器学习-核函数(Kernel Function)
核函数(Kernel Function)是一种数学函数,主要用于将数据映射到一个更高维的特征空间,以便于在这个新特征空间中更容易找到数据的结构或模式。核函数的主要作用是在不需要显式计算高维特征空间的情况下,通过内积操作来实…...
计算最接近的数
计算最接近的数 真题目录: 点击去查看 E B卷 100分题型 题目描述 给定一个数组X和正整数K,请找出使表达式: X[i] - X[i 1] - … - X[i K - 1] 结果最接近于数组中位数的下标 i ,如果有多个 i 满足条件,请返回最大的 i. 其中&…...

【机器学习基础】机器学习入门核心算法:随机森林(Random Forest)
机器学习入门核心算法:随机森林(Random Forest) 1. 算法逻辑2. 算法原理与数学推导2.1 核心组件2.2 数学推导2.3 OOB(Out-of-Bag)误差 3. 模型评估评估指标特征重要性可视化 4. 应用案例4.1 医疗诊断4.2 金融风控4.3 遥…...

内存管理--《Hello C++ Wrold!》(8)--(C/C++)--深入剖析new和delete的使用和底层实现
文章目录 前言C/C内存分布new和deletenew和delete的底层定位new表达式 内存泄漏作业部分 前言 在C/C编程中,内存管理是理解程序运行机制的核心基础,也是开发高效、稳定程序的关键。无论是局部变量的存储、动态内存的分配,还是对象生命周期的…...

TDengine 基于 TDgpt 的 AI 应用实战
基于 TDgpt 时序数据智能体的风力发电预测 作者: derekchen Demo 数据集准备 我们使用公开的UTSD数据集里面的某风场发电数据,作为预测算法的数据来源,基于历史数据预测未来一天内的每15分钟的发电量。原始数据集的采集频次为4秒ÿ…...

智慧零工平台前端开发实战:从uni-app到跨平台应用
智慧零工平台前端开发实战:从uni-app到跨平台应用 本文将详细介绍我如何使用uni-app框架开发一个支持微信小程序和H5的零工平台前端应用,包含技术选型、架构设计、核心功能实现及部署经验。 前言 在当今移动互联网时代,跨平台开发已成为提高开发效率的重要手段。本次我选择…...

MySQL 8.0 OCP 英文题库解析(十一)
Oracle 为庆祝 MySQL 30 周年,截止到 2025.07.31 之前。所有人均可以免费考取原价245美元的MySQL OCP 认证。 从今天开始,将英文题库免费公布出来,并进行解析,帮助大家在一个月之内轻松通过OCP认证。 本期公布试题91~100 试题91…...

在日常管理服务器中如何防止SQL注入与XSS攻击?
在日常管理服务器时,防止SQL注入(Structured Query Language Injection)和XSS(Cross-Site Scripting)攻击是至关重要的,这些攻击可能会导致数据泄露、系统崩溃和信息泄露。以下是一份技术文章,介…...
Flink SQL 编程详解:从入门到实战难题与解决方案
Flink SQL 编程详解:从入门到实战难题与解决方案 Apache Flink 是当前流批一体实时计算的主流框架之一,而 Flink SQL 则为开发者提供了用 SQL 语言处理流式和批量数据的能力。本文将全面介绍 Flink SQL 的基础概念、编程流程、典型应用场景、常见难题及…...
高效Excel数据净化工具:一键清除不可见字符与格式残留
摘要 本文将分享一款基于Python的Excel数据净化工具,用于自动清除给定的Excel文档中指定工作表中的不可见字符、批注、单元格样式等冗余数据。脚本支持进度可视化展示,保留核心数据处理逻辑的同时确保文件格式规整,特别适用于需要规范数据格…...

BugKu Web渗透之矛盾
开启场景,打开网页。发现是一段php代码。 这段代码也很好理解,就是get方式传参num,如果num不是数字类型,那么输出num的值,并且num1时,输出flag的值。 首先看看is_numeric的意思。 开始我想到了使用科学技术…...
Android开发常用Kotlin高级语法
一、扩展函数与扩展属性:为系统类 “量身定制” 工具方法 Kotlin 的扩展机制允许为现有类(包括 Java 类)添加新功能,无需继承或修改原类。这在 Android 开发中尤其适合封装高频重复操作(如 View 操作、上下文获取&…...