PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
目录
- 广告点击率预测问题
- 数据集结构
- 广告点击率预测模型的构建
- 1. 数据集准备
- 2. 构建数据加载器
- 3. 构建深度学习模型
- 4. 训练与评估
- 总结
广告点击率预测(CTR,Click-Through Rate Prediction)是在线广告领域中的重要任务,它帮助广告平台根据用户的兴趣预测广告的点击概率,从而提高广告投放的效果和广告商的收益。随着深度学习的快速发展,传统的广告点击率预测方法已逐渐被基于神经网络的模型所取代,深度学习在此领域的应用带来了显著的提升。
本文将通过实现一个简单的深度学习广告点击率预测模型,介绍如何利用PyTorch构建一个广告点击率预测系统。
广告点击率预测问题
广告点击率预测问题可以描述为:给定一组广告和用户的特征,预测用户点击该广告的概率。这类任务通常是一个二分类问题——用户点击广告与否,标签为1或0。
在广告点击率预测中,输入特征通常包括用户的历史行为、广告的特征(如广告类型、广告主题、展示位置等)以及用户的环境特征(如时间、设备等)。模型的任务是从这些特征中学习到有效的信息,并做出准确的预测。
数据集结构
为了实现广告点击率预测,我们假设数据集的结构如下:
用户ID | 广告ID | 时间戳 | 用户年龄 | 用户性别 | 广告类型 | 展示位置 | 点击标签 |
---|---|---|---|---|---|---|---|
1 | 1001 | 1609459200 | 25 | 0 | 视频 | 首页 | 1 |
2 | 1002 | 1609459260 | 30 | 1 | 图片 | 侧边栏 | 0 |
3 | 1003 | 1609459320 | 22 | 0 | 视频 | 首页 | 1 |
… | … | … | … | … | … | … | … |
- 用户ID:表示用户的唯一标识符。
- 广告ID:表示广告的唯一标识符。
- 时间戳:表示广告展示的时间。
- 用户年龄:表示用户的年龄。
- 用户性别:表示用户的性别,0为女性,1为男性。
- 广告类型:表示广告的类型(如视频广告、图片广告等)。
- 展示位置:表示广告展示的页面位置(如首页、侧边栏等)。
- 点击标签:表示用户是否点击广告,1表示点击,0表示未点击。
在实际应用中,数据集会非常庞大,并且包含多种类型的特征。为了让模型能够处理这些特征,我们通常需要将分类特征(如性别、广告类型等)进行数值化或独热编码。
广告点击率预测模型的构建
1. 数据集准备
首先,我们需要一个包含广告和用户特征的数据集。这里我们假设数据集中包含多个特征列,最后一列为标签(点击与否)。我们将使用 pandas
来加载数据,利用 train_test_split
将数据分为训练集和测试集。
import pandas as pd
from sklearn.model_selection import train_test_split# 加载数据
def load_data(file_path):df = pd.read_csv(file_path)features = df.iloc[:, :-1].values # 所有特征labels = df.iloc[:, -1].values # 最后一列标签return features, labels
2. 构建数据加载器
我们使用PyTorch的 Dataset
类来构建自定义数据集,并利用 DataLoader
来批量加载数据。这样可以更高效地进行模型训练。
from torch.utils.data import Dataset, DataLoaderclass CTRDataset(Dataset):def __init__(self, features, labels):self.features = torch.tensor(features, dtype=torch.float32)self.labels = torch.tensor(labels, dtype=torch.float32)def __len__(self):return len(self.features)def __getitem__(self, idx):return self.features[idx], self.labels[idx]
3. 构建深度学习模型
在本例中,我们使用一个简单的多层感知机(MLP)模型。该模型由三个全连接层组成,通过ReLU激活函数进行非线性变换,最终输出一个介于0和1之间的概率值。
import torch.nn as nnclass CTRModel(nn.Module):def __init__(self, input_dim):super(CTRModel, self).__init__()self.fc1 = nn.Linear(input_dim, 128) # 第一层self.fc2 = nn.Linear(128, 64) # 第二层self.fc3 = nn.Linear(64, 1) # 输出层self.sigmoid = nn.Sigmoid() # 输出概率def forward(self, x):x = torch.relu(self.fc1(x)) # 激活函数 ReLUx = torch.relu(self.fc2(x)) # 激活函数 ReLUx = self.fc3(x) # 输出层return self.sigmoid(x) # 预测点击率概率
4. 训练与评估
我们使用二元交叉熵损失函数(BCELoss
)和Adam优化器来训练模型。在每个epoch结束后,我们评估模型在测试集上的准确度。
import torch.optim as optim# 定义训练过程
def train(csv_file, num_epochs=10, lr=0.001):features, labels = load_data(csv_file)x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)# 创建数据加载器train_dataset = CTRDataset(x_train, y_train)test_dataset = CTRDataset(x_test, y_test)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)# 初始化模型、损失函数和优化器input_dim = features.shape[1]model = CTRModel(input_dim)criterion = nn.BCELoss() # 二元交叉熵损失函数optimizer = optim.Adam(model.parameters(), lr)# 训练过程model.train()for epoch in range(num_epochs):running_loss = 0.0for inputs, labels in train_loader:optimizer.zero_grad()outputs = model(inputs).squeeze(1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# 训练完成后,评估模型evaluate(model, test_loader)# 评估过程
def evaluate(model, val_loader):model.eval() # 设置为评估模式correct = 0total = 0with torch.no_grad():for inputs, labels in val_loader:outputs = model(inputs).squeeze(1)predicted = (outputs >= 0.5).float() # 将输出转化为0或1total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint(f'Accuracy: {accuracy:.4f}')
总结
通过这个简单的深度学习模型,我们实现了一个广告点击率预测系统。利用PyTorch,我们可以非常方便地构建神经网络模型,训练并进行评估。通过不断优化模型架构和特征工程,我们有可能进一步提升广告点击率的预测准确度。
随着广告行业的不断发展,点击率预测的需求将会越来越大,借助深度学习的强大能力,我们可以不断优化广告投放策略,达到更加精确的预测结果。希望本文的内容能为你搭建广告点击率预测系统提供帮助。
相关文章:
PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
目录 广告点击率预测问题数据集结构广告点击率预测模型的构建1. 数据集准备2. 构建数据加载器3. 构建深度学习模型4. 训练与评估 总结 广告点击率预测(CTR,Click-Through Rate Prediction)是在线广告领域中的重要任务,它帮助广告平…...

PAT甲级-1017 Queueing at Bank
题目 题目大意 银行有k个窗口,每个窗口只能服务1个人。如果3个窗口已满,就需要等待。给出n个人到达银行的时间和服务时间,要求计算每个人的平均等待时间。如果某个人的到达时间超过17:00:00,则不被服务,等待时间也不计…...

OneData体系架构详解
阿里巴巴的 OneData 体系架构方法论,主要分为三个阶段:业务板块、规范定义 和 模型设计。每个阶段的核心目标是确保数据的高效管理、共享与分析能力。 一. 业务板块(Business Segment) 业务板块是OneData体系架构中的第一步&…...
Gin 框架入门实战系列教程
一,Gin介绍 Gin是一个 Go (Golang) 编写的轻量级 http web 框架,运行速度非常快,如果你是性能和高效的追求者,我们推荐你使用Gin框架。 Gin最擅长的就是Api接口的高并发,如果项目的规模不大,业务相对简单…...
鸿蒙harmony json转对象(2)
在ArkTS(Ark TypeScript)中,接口(interface)是用来定义一个对象的结构,它可以包含属性、方法签名,以及嵌套的类型(包括其他接口或对象类型)。因此,接口里面可…...

M-LAG与E-trunk
M-LAG和E-trunk都是用来实现跨设备链路聚合,解决单点故障的,其大部分特性相同,工作模式M-LAG更胜一筹,支持双活,而且其原理感觉像是vrrpmstp的升级版,是往增加网络可靠性去发展的;而E-trunk是基于LACP扩展实现…...
【面试常见问题】
如何自我介绍 自我介绍是面试关键部分,是面试官了解求职者的首要途径,清晰自信的介绍能提升面试官印象,对求职成功至关重要。 糟糕的自我介绍示例 求职者朱晓明虽表明自己善于交际、积极,23 年毕业且从事 java 开发,…...

Spring Boot Starter介绍
前言 大概10来年以前,当时springboot刚刚出现并没有流行,当时的Java开发者们开发Web应用主要是使用spring整合springmvc或者struts、iBatis、hibernate等开发框架来进行开发。项目里一般有许多xml文件配置,其中配置了很多项目中需要用到的Be…...
vue和reacts数据响应式的差异
Vue 的数据响应式: 原理: Vue 使用 Object.defineProperty 或 Proxy(在 Vue 3 中)来实现数据的响应式。当创建 Vue 实例时,会对 data 对象中的属性进行遍历,将其转换为响应式属性。对于 Object.definePro…...
OpenEuler学习笔记(九):安装 OpenEuler后配置和优化
安装OpenEuler后,可以从系统基础设置、网络配置、性能优化等方面进行配置和优化,以下是具体内容: 系统基础设置 更新系统:以root用户登录系统后,在终端中执行sudo yum update命令,对系统进行更新…...
npm命令与yarn命令的区别
npm与Yarn的区别详解 在软件开发中,npm和Yarn都是流行的包管理工具,它们各自拥有独特的特性和优势。以下是它们的主要区别: 1. 安装速度 npm:安装速度相对较慢,尤其是在依赖项较多的情况下。Yarn:采用并…...

python如何导出数据到excel文件
python导出数据到excel文件的方法: 1、调用Workbook()对象中的add_sheet()方法 wb xlwt.Workbook() ws wb.add_sheet(A Test Sheet) 2、通过add_sheet()方法中的write()函数将数据写入到excel中,然后使用save()函数保存excel文件 ws.write(0, 0, 1234…...
MYSQL学习笔记(五):单行函数(字符串、数学、日期时间、条件判断、信息、加密、进制转换函数)讲解
前言: 学习和使用数据库可以说是程序员必须具备能力,这里将更新关于MYSQL的使用讲解,大概应该会更新30篇,涵盖入门、进阶、高级(一些原理分析);这一篇是讲解单行函数,当然mysql函数很多哈,只有多用才能记得…...

Grafana系列之Dashboard:新增仪表板、新增变量、过滤变量、变量查询、导入仪表板、变量联动、Grafana Alert
概述 关于Prometheus和Grafana的安装,略过。 写在前面 Dashboard:仪表板,可包含多个PanelPanel:面板,Dashboard中的组件 如有写得不对的地方,烦请指出。 新增仪表板 点击右上角的 选择New dashboard…...
(java版本)基于Misty1算法的加密软件的实现-毕业设计
一、基于Misty1算法的加密软件(Java)的实现 随着计算机网络及通信技术的飞速发展,信息安全成了信息社会急需解决的最重要的问题之一,密码技术是保证信息安全的核心技术。本文用JAVA语言开发了一个基于Misty1算法的加密软件&#x…...
Spring注解篇:@RestController详解
全文目录: 开篇语前言摘要概述源码解析使用案例分享代码分析使用场景优缺点分析测试用例 应用场景案例优缺点分析核心类方法介绍测试用例测试用例分析使用场景优缺点分析测试用例 小结总结文末 开篇语 哈喽,各位小伙伴们,你们好呀,…...
C++:将字符数组rkpryyrag,每个字母转换为其前面第13个字母后输出,如果超过a则从z再继续接着数。例如:b前面第1个字母是a。a前面第3个字母是x。
代码如下: #include <iostream> #include <string> using namespace std;int main(){string str "rkpryyrag";for (int i 0; i < str.length(); i){if (str[i] > a && str[i] < z){if (str[i] - a < 13){cout <<…...
《探秘鸿蒙Next:人工智能助力元宇宙高效渲染新征程》
在元宇宙的宏大愿景中,高效的渲染技术是构建沉浸式虚拟世界的关键。鸿蒙Next凭借与人工智能的深度融合,为元宇宙的渲染带来了全新的解决方案和无限可能。 智能场景分析与优化 人工智能能够对元宇宙场景进行智能分析。鸿蒙Next可以利用AI技术对场景中的…...
微前端qiankun的部署
微前端qiankun的部署 本地开发主应用配置启动端口子应用配置启动端口测试环境部署:场景 1:主应用和微应用部署到同一个服务器(同一个 IP 和端口)微应用都放在在一个特殊名称(不会和微应用重名)的文件夹下主应用配置子应用配置配置nginx本地开发 主应用配置启动端口 打开…...

HTML表格-掌握表格标签与属性
HTML表格是网页设计中用于展示数据的强大工具,它通过一系列标签和属性来控制表格的布局和样式。 一、HTML表格的基本结构 HTML表格由<table>标签定义,内部包含多个行(<tr>)、单元格(<td>或<th&…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...
1688商品列表API与其他数据源的对接思路
将1688商品列表API与其他数据源对接时,需结合业务场景设计数据流转链路,重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点: 一、核心对接场景与目标 商品数据同步 场景:将1688商品信息…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
ip子接口配置及删除
配置永久生效的子接口,2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

MySQL:分区的基本使用
目录 一、什么是分区二、有什么作用三、分类四、创建分区五、删除分区 一、什么是分区 MySQL 分区(Partitioning)是一种将单张表的数据逻辑上拆分成多个物理部分的技术。这些物理部分(分区)可以独立存储、管理和优化,…...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)
目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 (1)输入单引号 (2)万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...
LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人作为一款创新的AI硬件产品,通过将智能手机转变为具有情感交互能力的桌面机器人,展示了前沿AI技术与传统硬件设计的完美结合。作为AI与玩具领域的专家,我将全面解析LOOI的技术实现架构,特别是其手势识别、物体识别和环境…...
HTML前端开发:JavaScript 获取元素方法详解
作为前端开发者,高效获取 DOM 元素是必备技能。以下是 JS 中核心的获取元素方法,分为两大系列: 一、getElementBy... 系列 传统方法,直接通过 DOM 接口访问,返回动态集合(元素变化会实时更新)。…...