PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
目录
- 广告点击率预测问题
- 数据集结构
- 广告点击率预测模型的构建
- 1. 数据集准备
- 2. 构建数据加载器
- 3. 构建深度学习模型
- 4. 训练与评估
- 总结
广告点击率预测(CTR,Click-Through Rate Prediction)是在线广告领域中的重要任务,它帮助广告平台根据用户的兴趣预测广告的点击概率,从而提高广告投放的效果和广告商的收益。随着深度学习的快速发展,传统的广告点击率预测方法已逐渐被基于神经网络的模型所取代,深度学习在此领域的应用带来了显著的提升。
本文将通过实现一个简单的深度学习广告点击率预测模型,介绍如何利用PyTorch构建一个广告点击率预测系统。
广告点击率预测问题
广告点击率预测问题可以描述为:给定一组广告和用户的特征,预测用户点击该广告的概率。这类任务通常是一个二分类问题——用户点击广告与否,标签为1或0。
在广告点击率预测中,输入特征通常包括用户的历史行为、广告的特征(如广告类型、广告主题、展示位置等)以及用户的环境特征(如时间、设备等)。模型的任务是从这些特征中学习到有效的信息,并做出准确的预测。
数据集结构
为了实现广告点击率预测,我们假设数据集的结构如下:
| 用户ID | 广告ID | 时间戳 | 用户年龄 | 用户性别 | 广告类型 | 展示位置 | 点击标签 |
|---|---|---|---|---|---|---|---|
| 1 | 1001 | 1609459200 | 25 | 0 | 视频 | 首页 | 1 |
| 2 | 1002 | 1609459260 | 30 | 1 | 图片 | 侧边栏 | 0 |
| 3 | 1003 | 1609459320 | 22 | 0 | 视频 | 首页 | 1 |
| … | … | … | … | … | … | … | … |
- 用户ID:表示用户的唯一标识符。
- 广告ID:表示广告的唯一标识符。
- 时间戳:表示广告展示的时间。
- 用户年龄:表示用户的年龄。
- 用户性别:表示用户的性别,0为女性,1为男性。
- 广告类型:表示广告的类型(如视频广告、图片广告等)。
- 展示位置:表示广告展示的页面位置(如首页、侧边栏等)。
- 点击标签:表示用户是否点击广告,1表示点击,0表示未点击。
在实际应用中,数据集会非常庞大,并且包含多种类型的特征。为了让模型能够处理这些特征,我们通常需要将分类特征(如性别、广告类型等)进行数值化或独热编码。
广告点击率预测模型的构建
1. 数据集准备
首先,我们需要一个包含广告和用户特征的数据集。这里我们假设数据集中包含多个特征列,最后一列为标签(点击与否)。我们将使用 pandas 来加载数据,利用 train_test_split 将数据分为训练集和测试集。
import pandas as pd
from sklearn.model_selection import train_test_split# 加载数据
def load_data(file_path):df = pd.read_csv(file_path)features = df.iloc[:, :-1].values # 所有特征labels = df.iloc[:, -1].values # 最后一列标签return features, labels
2. 构建数据加载器
我们使用PyTorch的 Dataset 类来构建自定义数据集,并利用 DataLoader 来批量加载数据。这样可以更高效地进行模型训练。
from torch.utils.data import Dataset, DataLoaderclass CTRDataset(Dataset):def __init__(self, features, labels):self.features = torch.tensor(features, dtype=torch.float32)self.labels = torch.tensor(labels, dtype=torch.float32)def __len__(self):return len(self.features)def __getitem__(self, idx):return self.features[idx], self.labels[idx]
3. 构建深度学习模型
在本例中,我们使用一个简单的多层感知机(MLP)模型。该模型由三个全连接层组成,通过ReLU激活函数进行非线性变换,最终输出一个介于0和1之间的概率值。
import torch.nn as nnclass CTRModel(nn.Module):def __init__(self, input_dim):super(CTRModel, self).__init__()self.fc1 = nn.Linear(input_dim, 128) # 第一层self.fc2 = nn.Linear(128, 64) # 第二层self.fc3 = nn.Linear(64, 1) # 输出层self.sigmoid = nn.Sigmoid() # 输出概率def forward(self, x):x = torch.relu(self.fc1(x)) # 激活函数 ReLUx = torch.relu(self.fc2(x)) # 激活函数 ReLUx = self.fc3(x) # 输出层return self.sigmoid(x) # 预测点击率概率
4. 训练与评估
我们使用二元交叉熵损失函数(BCELoss)和Adam优化器来训练模型。在每个epoch结束后,我们评估模型在测试集上的准确度。
import torch.optim as optim# 定义训练过程
def train(csv_file, num_epochs=10, lr=0.001):features, labels = load_data(csv_file)x_train, x_test, y_train, y_test = train_test_split(features, labels, test_size=0.2, random_state=42)# 创建数据加载器train_dataset = CTRDataset(x_train, y_train)test_dataset = CTRDataset(x_test, y_test)train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)test_loader = DataLoader(test_dataset, batch_size=32, shuffle=False)# 初始化模型、损失函数和优化器input_dim = features.shape[1]model = CTRModel(input_dim)criterion = nn.BCELoss() # 二元交叉熵损失函数optimizer = optim.Adam(model.parameters(), lr)# 训练过程model.train()for epoch in range(num_epochs):running_loss = 0.0for inputs, labels in train_loader:optimizer.zero_grad()outputs = model(inputs).squeeze(1)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch [{epoch+1}/{num_epochs}], Loss: {running_loss/len(train_loader):.4f}')# 训练完成后,评估模型evaluate(model, test_loader)# 评估过程
def evaluate(model, val_loader):model.eval() # 设置为评估模式correct = 0total = 0with torch.no_grad():for inputs, labels in val_loader:outputs = model(inputs).squeeze(1)predicted = (outputs >= 0.5).float() # 将输出转化为0或1total += labels.size(0)correct += (predicted == labels).sum().item()accuracy = correct / totalprint(f'Accuracy: {accuracy:.4f}')
总结
通过这个简单的深度学习模型,我们实现了一个广告点击率预测系统。利用PyTorch,我们可以非常方便地构建神经网络模型,训练并进行评估。通过不断优化模型架构和特征工程,我们有可能进一步提升广告点击率的预测准确度。
随着广告行业的不断发展,点击率预测的需求将会越来越大,借助深度学习的强大能力,我们可以不断优化广告投放策略,达到更加精确的预测结果。希望本文的内容能为你搭建广告点击率预测系统提供帮助。
相关文章:
PyTorch广告点击率预测(CTR)利用深度学习提升广告效果
目录 广告点击率预测问题数据集结构广告点击率预测模型的构建1. 数据集准备2. 构建数据加载器3. 构建深度学习模型4. 训练与评估 总结 广告点击率预测(CTR,Click-Through Rate Prediction)是在线广告领域中的重要任务,它帮助广告平…...
PAT甲级-1017 Queueing at Bank
题目 题目大意 银行有k个窗口,每个窗口只能服务1个人。如果3个窗口已满,就需要等待。给出n个人到达银行的时间和服务时间,要求计算每个人的平均等待时间。如果某个人的到达时间超过17:00:00,则不被服务,等待时间也不计…...
OneData体系架构详解
阿里巴巴的 OneData 体系架构方法论,主要分为三个阶段:业务板块、规范定义 和 模型设计。每个阶段的核心目标是确保数据的高效管理、共享与分析能力。 一. 业务板块(Business Segment) 业务板块是OneData体系架构中的第一步&…...
Gin 框架入门实战系列教程
一,Gin介绍 Gin是一个 Go (Golang) 编写的轻量级 http web 框架,运行速度非常快,如果你是性能和高效的追求者,我们推荐你使用Gin框架。 Gin最擅长的就是Api接口的高并发,如果项目的规模不大,业务相对简单…...
鸿蒙harmony json转对象(2)
在ArkTS(Ark TypeScript)中,接口(interface)是用来定义一个对象的结构,它可以包含属性、方法签名,以及嵌套的类型(包括其他接口或对象类型)。因此,接口里面可…...
M-LAG与E-trunk
M-LAG和E-trunk都是用来实现跨设备链路聚合,解决单点故障的,其大部分特性相同,工作模式M-LAG更胜一筹,支持双活,而且其原理感觉像是vrrpmstp的升级版,是往增加网络可靠性去发展的;而E-trunk是基于LACP扩展实现…...
【面试常见问题】
如何自我介绍 自我介绍是面试关键部分,是面试官了解求职者的首要途径,清晰自信的介绍能提升面试官印象,对求职成功至关重要。 糟糕的自我介绍示例 求职者朱晓明虽表明自己善于交际、积极,23 年毕业且从事 java 开发,…...
Spring Boot Starter介绍
前言 大概10来年以前,当时springboot刚刚出现并没有流行,当时的Java开发者们开发Web应用主要是使用spring整合springmvc或者struts、iBatis、hibernate等开发框架来进行开发。项目里一般有许多xml文件配置,其中配置了很多项目中需要用到的Be…...
vue和reacts数据响应式的差异
Vue 的数据响应式: 原理: Vue 使用 Object.defineProperty 或 Proxy(在 Vue 3 中)来实现数据的响应式。当创建 Vue 实例时,会对 data 对象中的属性进行遍历,将其转换为响应式属性。对于 Object.definePro…...
OpenEuler学习笔记(九):安装 OpenEuler后配置和优化
安装OpenEuler后,可以从系统基础设置、网络配置、性能优化等方面进行配置和优化,以下是具体内容: 系统基础设置 更新系统:以root用户登录系统后,在终端中执行sudo yum update命令,对系统进行更新…...
npm命令与yarn命令的区别
npm与Yarn的区别详解 在软件开发中,npm和Yarn都是流行的包管理工具,它们各自拥有独特的特性和优势。以下是它们的主要区别: 1. 安装速度 npm:安装速度相对较慢,尤其是在依赖项较多的情况下。Yarn:采用并…...
python如何导出数据到excel文件
python导出数据到excel文件的方法: 1、调用Workbook()对象中的add_sheet()方法 wb xlwt.Workbook() ws wb.add_sheet(A Test Sheet) 2、通过add_sheet()方法中的write()函数将数据写入到excel中,然后使用save()函数保存excel文件 ws.write(0, 0, 1234…...
MYSQL学习笔记(五):单行函数(字符串、数学、日期时间、条件判断、信息、加密、进制转换函数)讲解
前言: 学习和使用数据库可以说是程序员必须具备能力,这里将更新关于MYSQL的使用讲解,大概应该会更新30篇,涵盖入门、进阶、高级(一些原理分析);这一篇是讲解单行函数,当然mysql函数很多哈,只有多用才能记得…...
Grafana系列之Dashboard:新增仪表板、新增变量、过滤变量、变量查询、导入仪表板、变量联动、Grafana Alert
概述 关于Prometheus和Grafana的安装,略过。 写在前面 Dashboard:仪表板,可包含多个PanelPanel:面板,Dashboard中的组件 如有写得不对的地方,烦请指出。 新增仪表板 点击右上角的 选择New dashboard…...
(java版本)基于Misty1算法的加密软件的实现-毕业设计
一、基于Misty1算法的加密软件(Java)的实现 随着计算机网络及通信技术的飞速发展,信息安全成了信息社会急需解决的最重要的问题之一,密码技术是保证信息安全的核心技术。本文用JAVA语言开发了一个基于Misty1算法的加密软件&#x…...
Spring注解篇:@RestController详解
全文目录: 开篇语前言摘要概述源码解析使用案例分享代码分析使用场景优缺点分析测试用例 应用场景案例优缺点分析核心类方法介绍测试用例测试用例分析使用场景优缺点分析测试用例 小结总结文末 开篇语 哈喽,各位小伙伴们,你们好呀,…...
C++:将字符数组rkpryyrag,每个字母转换为其前面第13个字母后输出,如果超过a则从z再继续接着数。例如:b前面第1个字母是a。a前面第3个字母是x。
代码如下: #include <iostream> #include <string> using namespace std;int main(){string str "rkpryyrag";for (int i 0; i < str.length(); i){if (str[i] > a && str[i] < z){if (str[i] - a < 13){cout <<…...
《探秘鸿蒙Next:人工智能助力元宇宙高效渲染新征程》
在元宇宙的宏大愿景中,高效的渲染技术是构建沉浸式虚拟世界的关键。鸿蒙Next凭借与人工智能的深度融合,为元宇宙的渲染带来了全新的解决方案和无限可能。 智能场景分析与优化 人工智能能够对元宇宙场景进行智能分析。鸿蒙Next可以利用AI技术对场景中的…...
微前端qiankun的部署
微前端qiankun的部署 本地开发主应用配置启动端口子应用配置启动端口测试环境部署:场景 1:主应用和微应用部署到同一个服务器(同一个 IP 和端口)微应用都放在在一个特殊名称(不会和微应用重名)的文件夹下主应用配置子应用配置配置nginx本地开发 主应用配置启动端口 打开…...
HTML表格-掌握表格标签与属性
HTML表格是网页设计中用于展示数据的强大工具,它通过一系列标签和属性来控制表格的布局和样式。 一、HTML表格的基本结构 HTML表格由<table>标签定义,内部包含多个行(<tr>)、单元格(<td>或<th&…...
Vue记事本应用实现教程
文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...
MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...
postgresql|数据库|只读用户的创建和删除(备忘)
CREATE USER read_only WITH PASSWORD 密码 -- 连接到xxx数据库 \c xxx -- 授予对xxx数据库的只读权限 GRANT CONNECT ON DATABASE xxx TO read_only; GRANT USAGE ON SCHEMA public TO read_only; GRANT SELECT ON ALL TABLES IN SCHEMA public TO read_only; GRANT EXECUTE O…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
前端中slice和splic的区别
1. slice slice 用于从数组中提取一部分元素,返回一个新的数组。 特点: 不修改原数组:slice 不会改变原数组,而是返回一个新的数组。提取数组的部分:slice 会根据指定的开始索引和结束索引提取数组的一部分。不包含…...
uniapp 实现腾讯云IM群文件上传下载功能
UniApp 集成腾讯云IM实现群文件上传下载功能全攻略 一、功能背景与技术选型 在团队协作场景中,群文件共享是核心需求之一。本文将介绍如何基于腾讯云IMCOS,在uniapp中实现: 群内文件上传/下载文件元数据管理下载进度追踪跨平台文件预览 二…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
C# winform教程(二)----checkbox
一、作用 提供一个用户选择或者不选的状态,这是一个可以多选的控件。 二、属性 其实功能大差不差,除了特殊的几个外,与button基本相同,所有说几个独有的 checkbox属性 名称内容含义appearance控件外观可以变成按钮形状checkali…...
