浅说树上差分——点差分
我们前面也学过差分,现在的话我们就把他放到树上来做。因为这是树,所以会有点和边之分,所以树上差分也会分为 点差分 和 边差分 。
引入
树上差分其实和线性差分没有什么区别,只不过是放到了树上的两点,而他们之间的最简路径就是可以类比成线性的两点之间的线段。

所以我们如果要对一条曲线进行操作的话,就是在树上跑差分,那么树上差分数组究竟是什么呢,他又代表着什么意思呢?这是一个值得深思的问题,也是困扰我很久的问题。
树上差分数组本质上存储的是 操纵方式,而不是简单的差值。例如一个点 x x x 的差分数组 p [ x ] = − 3 p[x]=-3 p[x]=−3 代表这个点或这个点所对应的边被减去了3,而不是这个点或这个边等于-3,这是一个易错也易混的点。
相同的,对线性差分数组进行求前缀和的话,我们就可以得到真实的答案的值,那么类似的,在 树上差分数组中求子树和,就可以的到这个点的操纵方式,不过为什么要求子树和,而不求其它的,我也不知道,我也不敢问。

点差分
如果我们现在要对树上的一条路径上的点进行统一操作,比如说 +1 或 -2,我们应该如何完成?
首先是不是很容易想到暴力 dfs ?但是这样的时间复杂度是 O ( n 2 ) \cal O(n^2) O(n2) 的,不优秀。但是我们在学什么,是不是在学差分,那为什么不从差分的视角来考虑考虑?
如果我们要对一条 A → B A \rightarrow B A→B 的路径进行+1的修改操作,那么首先我们肯定要在点 A A A 和 B B B 两个位置进行修改对吧,又因为我们最后是通过求子树和来求得每个点的修改方式,所以不能影响 点 A A A 和 点 B B B 所对应的子树,所以我们可以非常明了的得到
p [ A ] + + , p [ B ] + + p[A]++,p[B]++ p[A]++,p[B]++
然后我们的目光不断向上看,发现基本上都没有问题,但是在他们的最近公共祖先那里除了岔子,为什么呢?因为二者是从两端慢慢爬上来的,这就会导致他们的 LCA 会被增加两次,所以我们又可以得到
p [ l c a ( A , B ) ] − − p[lca(A,B)]-- p[lca(A,B)]−−
我们继续往上看,发现点 A A A 和点 B B B 的最近公共祖先的父亲在计算子树和的时候任然会被增加一次,但是他应该是不能被修改的,所以我们还可以得到
p [ f a ( l c a ( A , B ) ) ] − − p[fa(lca(A,B))]-- p[fa(lca(A,B))]−−
继续往上看,发现没有问题了,说明我们的操作就成功的完成了!(看不懂的,看下面的图示)

我们把上述的公式总结一下就是 两个点自己加,他们的lca和lca的爸爸都要减,把它写成代码就是
//dp 为倍增数组,lca为求最近公共祖先的函数
int root=lca(a,b);
p[a]++,p[b]++;
p[root]--,p[dp[root][0]]--;
那么当我们要求所有的答案的时候,也就是要求子树和的时候,我们就可以使用一个时间复杂度为 O ( n ) \cal O(n) O(n) 的 dfs 函数来求解:
//mp为邻接表存储
void get(int x, int fa) {int len = mp[x].size();for (int i = 0; i < len; i++) {if (mp[x][i] == fa) continue;int t = mp[x][i];get(t, x);p[x] += p[t];//差分数组求子树和}
}
看完后是不是感觉非常简单,就只是在树上倍增的基础上对一个数组进行了一点点操作,那么好,我们上实战!
例题1——wwx的出玩
wwx给她的衣柜的有 n 个隔间,隔间编号为1到 n 。她有 k 天要和她的男朋友出去玩,第 i 次玩耍wwx会穿隔间 si 到隔间 ti 的衣服,每次穿这些衣服,都会给它们带来一个单位的损坏,你作为她的男朋友,请计算损坏程度最大的衣服的损坏程度是多少。
分析与解答
不难发现,这道题就是一道裸的点差分问题,所以我们直接套模板,顺便也把模板给你了。
#include<bits/stdc++.h>
using namespace std;
const int INF=1e5;
vector<int> mp[INF];
int ans,dp[INF][20],deep[INF],num[INF];//num为差分数组void prepare(int x,int fa){for (int j=1;(1<<j)<=deep[x]-1;j++){dp[x][j]=dp[dp[x][j-1]][j-1];} int len=mp[x].size();for (int i=0;i<len;i++){if (mp[x][i]==fa)continue;int t=mp[x][i];deep[t]=deep[x]+1,dp[t][0]=x;prepare(t,x); }
}int lca(int x,int y){if (deep[x]<deep[y])swap(x,y);int index=__lg(deep[x]-deep[y]);for (int i=index;i>=0;i--){if (deep[dp[x][i]]>=deep[y])x=dp[x][i];if (deep[x]==deep[y])break;}if (x==y)return x;for (int i=18;i>=0;i--){if (dp[x][i]!=dp[y][i])x=dp[x][i],y=dp[y][i];}return dp[x][0];
}void get(int x,int fa){int len=mp[x].size();for (int i=0;i<len;i++){if (mp[x][i]==fa)continue;int t=mp[x][i];get(t,x);num[x]+=num[t];}ans=max(ans,num[x]);//求得最大值
}
int main(){int n,k;cin>>n>>k;for (int i=1;i<n;i++){int u,v;cin>>u>>v;mp[u].push_back(v);mp[v].push_back(u);} deep[1]=1;prepare(1,-1);for (int i=1;i<=k;i++){int s,t;cin>>s>>t;int root=lca(s,t);num[s]++,num[t]++,num[root]--,num[dp[root][0]]--;}get(1,-1);cout<<ans;return 0;
}
例题2——松鼠的新家
题目传送门
分析与解答
这道题其实也是裸题,我们稍微分析一下就知道它的那个参观路线是可以被分成多个区间修改的,但是这样的话,他们的端点的位置,会被重复计算,所以要特判
#include<bits/stdc++.h>
using namespace std;
const int INF=3e5+10;
vector<int> mp[INF];
int ans,dp[INF][20],deep[INF];
int a[INF],num[INF];void prepare(int x,int fa){for (int j=1;(1<<j)<=deep[x]-1;j++){dp[x][j]=dp[dp[x][j-1]][j-1];} int len=mp[x].size();for (int i=0;i<len;i++){if (mp[x][i]==fa)continue;int t=mp[x][i];deep[t]=deep[x]+1,dp[t][0]=x;prepare(t,x); }
}int lca(int x,int y){if (deep[x]<deep[y])swap(x,y);int index=__lg(deep[x]-deep[y]);for (int i=index;i>=0;i--){if (deep[dp[x][i]]>=deep[y])x=dp[x][i];if (deep[x]==deep[y])break;}if (x==y)return x;for (int i=18;i>=0;i--){if (dp[x][i]!=dp[y][i])x=dp[x][i],y=dp[y][i];}return dp[x][0];
}void get(int x,int fa){int len=mp[x].size();for (int i=0;i<len;i++){if (mp[x][i]==fa)continue;int t=mp[x][i];get(t,x);num[x]+=num[t];}ans=max(ans,num[x]);
}
int main(){int n;cin>>n;for (int i=1;i<=n;i++){scanf("%d",&a[i]);}for (int i=1;i<n;i++){int u,v;scanf("%d%d",&u,&v);mp[u].push_back(v);mp[v].push_back(u);} deep[1]=1;prepare(1,-1);for (int i=1;i<n;i++){int s=a[i],t=a[i+1];int root=lca(s,t);num[s]++,num[t]++,num[root]--,num[dp[root][0]]--;}get(1,-1);for (int i=2;i<=n;i++){num[a[i]]--;}for (int i=1;i<=n;i++){printf("%d\n",num[i]);}return 0;
}
相关文章:
浅说树上差分——点差分
我们前面也学过差分,现在的话我们就把他放到树上来做。因为这是树,所以会有点和边之分,所以树上差分也会分为 点差分 和 边差分 。 引入 树上差分其实和线性差分没有什么区别,只不过是放到了树上的两点,而他们之间的…...
All in大模型!智能座舱语音交互决胜2025
大模型加速上车,AI智能座舱竞争更显白热化。 诚然,在语言大模型为核心的多模态能力加持下,智能语音助理能够理解复杂的语言指令,实现知识问答、文本生成等,以及根据上下文进行逻辑推理,提供更智能、准确的…...
windows git bash 使用zsh 并集成 oh my zsh
参考了 这篇文章 进行配置,记录了自己的踩坑过程,并增加了 zsh-autosuggestions 插件的集成。 主要步骤: 1. git bash 这个就不说了,自己去网上下,windows 使用git时候 命令行基本都有它。 主要也是用它不方便&…...
Git进阶笔记系列(01)Git核心架构原理 | 常用命令实战集合
读书笔记:卓越强迫症强大恐惧症,在亲子家庭、职场关系里尤其是纵向关系模型里,这两种状态很容易无缝衔接。尤其父母对子女、领导对下属,都有望子成龙、强将无弱兵的期望,然而在你的面前,他们才是永远强大的…...
IDEA导入Maven工程不识别pom.xml
0 现象 把阿里 sentinel 项目下载本地后,IDEA 中却没显示 maven 工具栏。 1 右键Maven Projects 点击IDEA右侧边栏的Maven Projects,再点击: 在出现的选择框中选择指定的未被识别的pom.xml即可: 2 Add as maven project 右键p…...
AT8870单通道直流电机驱动芯片
AT8870单通道直流电机驱动芯片 典型应用原理图 描述 AT8870是一款刷式直流电机驱动器,适用于打印机、电器、工业设备以及其他小型机器。两个逻辑输入控制H桥驱动器,该驱动器由四个N-MOS组成,能够以高达3.6A的峰值电流双向控制电机。利用电流…...
计算机视觉算法实战——实体物体跟踪
✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连 ✨ ✨个人主页欢迎您的访问 ✨期待您的三连✨ 1. 领域介绍✨✨ 实体物体跟踪(Object Tracking)是计算机视觉领域中的一个重要研究方向&#x…...
网络协议如何确保数据的安全传输?
网络协议作为计算机网络通信的基石,其设计不仅旨在实现数据的有效传输,更在于确保数据在传输过程中的安全性。对于网络协议如何保障数据安全传输,是很多企业和网络IT部门的重点,本文将从多方面概述相关方法。 加密与解密机制 1. …...
在elasticsearch中,document数据的写入流程如何?
本文将为您介绍文档内容是如何写入ES集群中。 数据写入ES集群的流程图如下 流程介绍 用户携带数据发起POST请求指向集群9200端口。9200端口将数据写入请求发给主分片。主分片会对数据进行分片计算分发给具体分片。(计算方式:hash % primary_number_sha…...
【优选算法】6----查找总价格为目标值的两个商品
这道题相对于前寄到算法题较为容易~ 同样也是使用了双指针的算法哦~ ----------------------------------------begin-------------------------------------- 题目解析: 题目也是很简单地一句话,但是意图还是很明确~ 讲解算法原理: 同样的&…...
99.8 金融难点通俗解释:净资产收益率(ROE)
目录 0. 承前1. 简述2. 比喻:养母鸡赚钱2.1 第一步:投资母鸡2.2 第二步:母鸡下蛋2.3 第三步:计算赚钱2.4 第四步:计算ROE 3. 生活中的例子3.1 好的ROE3.2 一般的ROE3.3 差的ROE 4. 小朋友要注意4.1 ROE高不一定好4.2 R…...
Java设计模式—观察者模式
观察者模式 目录 观察者模式1、什么是观察者模式?2、观察者模式优缺点及注意事项?3、观察者模式实现?4、手写线程安全的观察者模式? 1、什么是观察者模式? - 实例:现实生活中很多事物都是依赖存在的&#x…...
人工智能在数字化转型中的角色:从数据分析到智能决策
引言 在数字化转型浪潮中,人工智能(AI)正迅速崛起,成为推动企业创新和变革的关键力量。面对日益复杂的市场环境和激烈的行业竞争,企业亟需借助技术手段提高运营效率、优化决策过程,并增强市场竞争力。而AI…...
论文阅读 Multi-view Classification Using Hybrid Fusion and Mutual Distillation
Multi-view Classification Using Hybrid Fusion and Mutual Distillation Intro 多视角问题可以分为两类: Structured。固定视角,或预先定义的视角的问题。unstructured。 本文的三大contributions: 引入了混合的多视角融合策略。使用了…...
AIGC浪潮下,图文内容社区数据指标体系如何构建?
文章目录 01 案例:以图文内容社区为例实践数据指标体构建02 4个步骤实现数据指标体系构建1. 明确业务目标,梳理北极星指标2. 梳理业务流程,明确过程指标3. 指标下钻分级,构建多层级数据指标体系4. 添加分析维度,构建完…...
”彩色的验证码,使用pytesseract识别出来的验证码内容一直是空“的解决办法
问题:彩色的验证码,使用pytesseract识别出来的验证码内容一直是空字符串 原因:pytesseract只识别黑色部分的内容 解决办法:先把彩色图片精确转换成黑白图片。再将黑白图片进行反相,将验证码部分的内容变成黑色&#…...
前端Vue2项目使用md编辑器
项目中有一个需求,要在前端给用户展示内容,内容有 AI 生成的,返回来的是 md 格式,所以需要给用户展示 md 格式,并且管理端也可以编辑这个 md 格式的文档。 使用组件库 v-md-editor。 https://code-farmer-i.github.i…...
OpenVela 架构剖析:从内核到应用
目录 一、总体架构概述 二、 内核层 2.1. OpenVela架构的内核基础 2.2. 内核层的主要职责 2.3. OpenVela对NuttX的扩展与优化 三、系统服务层 2.1. 进程管理 2.2. 内存管理 2.3. 文件系统 2.4. 网络通信 四、框架层 4.1. 模块化设计 4.2. API接口 4.3. 组件和服务…...
vue视频流播放,支持多种视频格式,如rmvb、mkv
先将视频转码为ts ffmpeg -i C:\test\3.rmvb -codec: copy -start_number 0 -hls_time 10 -hls_list_size 0 -f hls C:\test\a\output.m3u8 后端配置接口 import org.springframework.core.io.Resource; import org.springframework.core.io.UrlResource; import org.spring…...
记一个Timestamp时区问题的坑
resultSet.getTimestamp(“kpi_collect_time”)查出来的Timestamp居然是带时区的, 如果该Timestamp不是UTC时区的,Timestamp.toInstant().atZone(ZoneId.of(“UTC”))会把Timestamp转成UTC时区 使用Timestamp.toLocalDateTime()可以直接把时区信息抹除 …...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
铭豹扩展坞 USB转网口 突然无法识别解决方法
当 USB 转网口扩展坞在一台笔记本上无法识别,但在其他电脑上正常工作时,问题通常出在笔记本自身或其与扩展坞的兼容性上。以下是系统化的定位思路和排查步骤,帮助你快速找到故障原因: 背景: 一个M-pard(铭豹)扩展坞的网卡突然无法识别了,扩展出来的三个USB接口正常。…...
第19节 Node.js Express 框架
Express 是一个为Node.js设计的web开发框架,它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用,和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...
在rocky linux 9.5上在线安装 docker
前面是指南,后面是日志 sudo dnf config-manager --add-repo https://download.docker.com/linux/centos/docker-ce.repo sudo dnf install docker-ce docker-ce-cli containerd.io -y docker version sudo systemctl start docker sudo systemctl status docker …...
《Playwright:微软的自动化测试工具详解》
Playwright 简介:声明内容来自网络,将内容拼接整理出来的文档 Playwright 是微软开发的自动化测试工具,支持 Chrome、Firefox、Safari 等主流浏览器,提供多语言 API(Python、JavaScript、Java、.NET)。它的特点包括&a…...
YSYX学习记录(八)
C语言,练习0: 先创建一个文件夹,我用的是物理机: 安装build-essential 练习1: 我注释掉了 #include <stdio.h> 出现下面错误 在你的文本编辑器中打开ex1文件,随机修改或删除一部分,之后…...
Golang dig框架与GraphQL的完美结合
将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...
ServerTrust 并非唯一
NSURLAuthenticationMethodServerTrust 只是 authenticationMethod 的冰山一角 要理解 NSURLAuthenticationMethodServerTrust, 首先要明白它只是 authenticationMethod 的选项之一, 并非唯一 1 先厘清概念 点说明authenticationMethodURLAuthenticationChallenge.protectionS…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...
