论文阅读 Multi-view Classification Using Hybrid Fusion and Mutual Distillation
Multi-view Classification Using Hybrid Fusion and Mutual Distillation
Intro
多视角问题可以分为两类:
- Structured。固定视角,或预先定义的视角的问题。
- unstructured。
本文的三大contributions:
- 引入了混合的多视角融合策略。
- 使用了互蒸馏策略。具体而言,对多视角融合预测,与单视角预测均值,采用distillation loss。
- 证实了在多种多视角任务当中的有效性。
Related Work
Fusion策略分类。

- Early Fusion:在low-level对feature进行融合,之后的训练过程与单视角情况一致。
缺点:low-level feature没经过网络的深层次处理,过早的融合特征可能会将一些task-irrelevant features融入进去。 - Late Fusion:先利用某些网络(如CNN)独立从input中学习feature,然后对特征进行融合。
比如:简单的串接feature,然后再对融合后的特征做池化。 - Score Fusion:极端的late fusion。每个单视角分别预测,然后只融合最后的预测vector(预测分数)。
- 本文采用 Hybrid 策略:结合了score fusion和score fusion。
- 本文引入了多视角预测与score-fused的单视角预测(具体而言是,求所有单个视角预测分数的均值)的互蒸馏。
Method
整体Pipeline如下:

算法流程:
-
I 1 I_1 I1为第一个视角的输入样本。每个视角的输入分别送入CNN中,得到feature:
- C ( I ) ∈ R h × w × c \mathcal{C}(I) \in \mathbb{R}^{h \times w \times c} C(I)∈Rh×w×c:CNN输出特征。维度分别为高,宽,通道数。
-
将 C ( I ) \mathcal{C}(I) C(I)转为Token形式,以便之后送入Transformer:首先将空间维度 ( h , w ) (h,w) (h,w)拉成一维 S = h w S = hw S=hw;然后将其encode成token形式:
E ( I ) = C ( I ) E + E p o s \begin{equation} \mathcal{E}\left(\boldsymbol{I}\right)=\mathcal{C}\left(\boldsymbol{I}\right)\mathbf{E}+\mathbf{E}_{\mathbf{pos}} \end{equation} E(I)=C(I)E+Epos- E ∈ R c × d \mathbf{E} \in \mathbb{R}^{c \times d} E∈Rc×d:投影矩阵。
- E pos \mathbf{E}_\textbf{pos} Epos:可学习的positional encoding。
- 最后将Eq1结果串接一个 x class ∈ R 1 × d x_\textbf{class} \in \mathbb{R}^{1 \times d} xclass∈R1×d
E ( I ) ∈ R S × d \mathcal{E}\left(\boldsymbol{I}\right) \in \mathbb{R}^{S \times d} E(I)∈RS×d,相当于长度为S的序列,每个token维度为d。
-
将 E ( I ) \mathcal{E}\left(\boldsymbol{I}\right) E(I)送入Transformer中。其中单个视角分别送入各自的Transformer,输出单一视角预测;多个视角特征融合,送入一个Transformer,输出多视角预测。N个视角的输入图像,对应N+1个Transformer。
-
单视角预测:
z = T ( [ x c l a s s ; E ( I ) ] ) \begin{equation} z=\mathcal{T}\left(\left[x_{\mathbf{class}};\mathcal{E}\left(\boldsymbol{I}\right)\right]\right) \end{equation} z=T([xclass;E(I)])
T \mathcal{T} T表示Transformer -
多视角预测:
z ′ = T ( [ x c l a s s ; E ′ ( I 1 ) ; E ′ ( I 2 ) ; . . . ; E ′ ( I N ) ] ) \begin{equation} \boldsymbol{{z}^{\prime}}=\mathcal{T}\left(\left[\boldsymbol{x}_{\mathbf{class}};\mathcal{E}^{\prime}\left(\boldsymbol{I}_{1}\right);\mathcal{E}^{\prime}\left(\boldsymbol{I}_{2}\right);...;\mathcal{E}^{\prime}\left(\boldsymbol{I}_{N}\right)\right]\right) \end{equation} z′=T([xclass;E′(I1);E′(I2);...;E′(IN)])
其中 z , z ′ ∈ R 1 × k \boldsymbol{z}, \boldsymbol{z}^\prime \in \mathbb{R}^{1 \times k} z,z′∈R1×k为prediction vector。 k k k为分类个数。
-
-
使用联合损失函数:
L = L m + L s + λ L m d \begin{equation} \mathcal{L}=\mathcal{L}_m+\mathcal{L}_s+\lambda\mathcal{L}_{md} \end{equation} L=Lm+Ls+λLmd
分为三大部分:- L m \mathcal{L}_m Lm:多视角预测损失。为多视角融合特征的预测结果,与ground-truth label的损失。
- L s \mathcal{L}_s Ls:单视角平均预测损失:所有单视角预测损失的平均值(score-fused)。
- L m d \mathcal{L}_{md} Lmd:互蒸馏损失。
L m d ( { z 1 , . . . , z N } , z ′ ; τ ) = 1 2 τ 2 ( L k d ( z ˉ ^ , z ′ ; τ ) + L k d ( z ^ ′ , z ˉ ; τ ) ) \begin{align} & \mathcal{L}_{md}\left(\{\boldsymbol{z}_1,...,\boldsymbol{z}_N\},\boldsymbol{z}^{\prime};\tau\right) \notag \\ = & \frac{1}{2}\tau^2 \left(\mathcal{L}_{kd}\left(\hat{\bar{\boldsymbol{z}}},\boldsymbol{z^{\prime}};\tau\right)+\mathcal{L}_{kd}\left(\hat{\boldsymbol{z}}^{\prime},\bar{\boldsymbol{z}};\tau\right)\right) \end{align} =Lmd({z1,...,zN},z′;τ)21τ2(Lkd(zˉ^,z′;τ)+Lkd(z^′,zˉ;τ))
- $\bold{\hat{}} \quad $:表示不进行反向传播的tensor(gradient-detached copy)。
- z ˉ = 1 N ∑ i = 1 N z i \bar{\boldsymbol{z}}=\frac{1}{N}\sum_{i=1}^N\boldsymbol{z}_i zˉ=N1∑i=1Nzi。N表示N个视角。
- z ˉ = 1 N ∑ i = 1 N z i \bar{\boldsymbol{z}}=\frac{1}{N}\sum_{i=1}^N\boldsymbol{z}_i zˉ=N1∑i=1Nzi。N表示N个视角。
相关文章:
论文阅读 Multi-view Classification Using Hybrid Fusion and Mutual Distillation
Multi-view Classification Using Hybrid Fusion and Mutual Distillation Intro 多视角问题可以分为两类: Structured。固定视角,或预先定义的视角的问题。unstructured。 本文的三大contributions: 引入了混合的多视角融合策略。使用了…...
AIGC浪潮下,图文内容社区数据指标体系如何构建?
文章目录 01 案例:以图文内容社区为例实践数据指标体构建02 4个步骤实现数据指标体系构建1. 明确业务目标,梳理北极星指标2. 梳理业务流程,明确过程指标3. 指标下钻分级,构建多层级数据指标体系4. 添加分析维度,构建完…...
”彩色的验证码,使用pytesseract识别出来的验证码内容一直是空“的解决办法
问题:彩色的验证码,使用pytesseract识别出来的验证码内容一直是空字符串 原因:pytesseract只识别黑色部分的内容 解决办法:先把彩色图片精确转换成黑白图片。再将黑白图片进行反相,将验证码部分的内容变成黑色&#…...
前端Vue2项目使用md编辑器
项目中有一个需求,要在前端给用户展示内容,内容有 AI 生成的,返回来的是 md 格式,所以需要给用户展示 md 格式,并且管理端也可以编辑这个 md 格式的文档。 使用组件库 v-md-editor。 https://code-farmer-i.github.i…...
OpenVela 架构剖析:从内核到应用
目录 一、总体架构概述 二、 内核层 2.1. OpenVela架构的内核基础 2.2. 内核层的主要职责 2.3. OpenVela对NuttX的扩展与优化 三、系统服务层 2.1. 进程管理 2.2. 内存管理 2.3. 文件系统 2.4. 网络通信 四、框架层 4.1. 模块化设计 4.2. API接口 4.3. 组件和服务…...
vue视频流播放,支持多种视频格式,如rmvb、mkv
先将视频转码为ts ffmpeg -i C:\test\3.rmvb -codec: copy -start_number 0 -hls_time 10 -hls_list_size 0 -f hls C:\test\a\output.m3u8 后端配置接口 import org.springframework.core.io.Resource; import org.springframework.core.io.UrlResource; import org.spring…...
记一个Timestamp时区问题的坑
resultSet.getTimestamp(“kpi_collect_time”)查出来的Timestamp居然是带时区的, 如果该Timestamp不是UTC时区的,Timestamp.toInstant().atZone(ZoneId.of(“UTC”))会把Timestamp转成UTC时区 使用Timestamp.toLocalDateTime()可以直接把时区信息抹除 …...
新年好(Dijkstra+dfs/全排列)
1135. 新年好 - AcWing题库 思路: 1.先预处理出1,a,b,c,d,e到其他点的单源最短路,也就是进行6次Dijkstra 2.计算以1为起点的这6个数的全排列,哪种排列方式所得距离最小,也可以使用dfs 1.Dijkstradfs #define int long longusing …...
如何“看到” Spring 容器?
Spring 容器是一个运行时的抽象工具,用来管理 Bean 的生命周期和依赖。虽然它本身不可直接观察,但可以通过以下方式间接“看到”容器的内容或行为。 2.1 容器是如何实例化的? Spring 容器的实例化是通过 ApplicationContext 或 BeanFactory …...
怎么使用CRM软件?操作方法和技巧有哪些?
什么是CRM? 嘿,大家好!你知道吗,在当今这个数字化时代里,我们每天都在与各种各样的客户打交道。无论是大公司还是小型企业,都希望能够更好地管理这些关系并提高业务效率。这时候就轮到我们的“老朋友”——…...
Spingboot整合Netty,简单示例
Netty介绍在文章末尾 Netty介绍 项目背景 传统socket通信,有需要自身管理整个状态,业务繁杂等问题。 pom.xml <dependency><groupId>io.netty</groupId><artifactId>netty-all</artifactId><version>4.1.117.F…...
grafana新增email告警
选择一个面板 比如cpu 新增一个临界点表达式 input选A 就是A的值达到某个临界点 触发告警 我这边IS ABOVE0.15就是cpu大于0.15%就触发报警,这个值怎么填看指标的值显示 这里要设置一下报警条件 这边随便配置下 配置标签和通知,选择你的邮件 看下告警…...
Github 2025-01-20 开源项目周报 Top15
根据Github Trendings的统计,本周(2025-01-20统计)共有15个项目上榜。根据开发语言中项目的数量,汇总情况如下: 开发语言项目数量Python项目10Rust项目2TypeScript项目1C++项目1Jupyter Notebook项目1Go项目1Tabby: 自托管的AI编码助手 创建周期:310 天开发语言:Rust协议类…...
【Rabbitmq】Rabbitmq高级特性-发送者可靠性
Rabbitmq发送者可靠性 发送者重连发送者确认1.开启确认机制2.ReturnCallback3.ConfirmCallback MQ的可靠性数据持久化交换机持久化队列持久化消息持久化 Lazy Queue 总结其他文章 Rabbitmq提供了两种发送来保证发送者的可靠性,第一种叫发送者重连,第二种…...
K8S中Service详解(一)
Service介绍 在Kubernetes中,Service资源解决了Pod IP地址不固定的问题,提供了一种更稳定和可靠的服务访问方式。以下是Service的一些关键特性和工作原理: Service的稳定性:由于Pod可能会因为故障、重启或扩容而获得新的IP地址&a…...
Effective C++读书笔记——item23(用非成员,非友元函数取代成员函数)
一、主要观点: 在某些情况下,使用 non-member、non-friend 函数来替换 member 函数可以增强封装性和可扩展性,提供更好的软件设计。 二、详细解释: 封装性: 类成员函数的封装性考量:成员函数可以访问类的…...
云原生前端开发:打造现代化高性能的用户体验
引言:前端开发的新风向 在过去的几年中,前端开发领域经历了快速的演变,从早期的静态网页到如今复杂的单页应用(SPA),再到微前端架构和渐进式Web应用(PWA),前端技术一直处…...
循环队列(C语言版)
循环队列(C语言版) 1.简单介绍循环队列2.使用何种结构来实现3.基本结构4.初始化5.判空判满6.向循环队列插入一个元素7.从循环队列中删除一个元素8.获取队头队尾元素9.释放空间10.完整代码 🌟🌟hello,各位读者大大们你们好呀&#…...
考研408笔记之数据结构(五)——图
数据结构(五)——图 1. 图的基本概念 1.1 图的定义 1.2 有向图和无向图 在有向图中,使用圆括号表示一条边,圆括号里元素位置互换没有影响。 在无向图中,使用尖括号表示一条边,尖括号里元素位置互换则表示…...
没有公网IP实现seafile本地IP访问和虚拟局域网IP同时访问和上传文件
前言 Ubuntu 24.04 LTSDocker 安装 seafileOpenWrtTailscale Ubuntu 24.04 LTS 通过 docker desktop 安装 seafile 搭建个人网盘中,已经实现了本地局域网放问Ubuntu IP来访问Seafile,以及通过 Ubuntu 的 Tailscale IP 访问Seafile。但是,文…...
[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?
🧠 智能合约中的数据是如何在区块链中保持一致的? 为什么所有区块链节点都能得出相同结果?合约调用这么复杂,状态真能保持一致吗?本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
MySQL JOIN 表过多的优化思路
当 MySQL 查询涉及大量表 JOIN 时,性能会显著下降。以下是优化思路和简易实现方法: 一、核心优化思路 减少 JOIN 数量 数据冗余:添加必要的冗余字段(如订单表直接存储用户名)合并表:将频繁关联的小表合并成…...
站群服务器的应用场景都有哪些?
站群服务器主要是为了多个网站的托管和管理所设计的,可以通过集中管理和高效资源的分配,来支持多个独立的网站同时运行,让每一个网站都可以分配到独立的IP地址,避免出现IP关联的风险,用户还可以通过控制面板进行管理功…...
从面试角度回答Android中ContentProvider启动原理
Android中ContentProvider原理的面试角度解析,分为已启动和未启动两种场景: 一、ContentProvider已启动的情况 1. 核心流程 触发条件:当其他组件(如Activity、Service)通过ContentR…...
协议转换利器,profinet转ethercat网关的两大派系,各有千秋
随着工业以太网的发展,其高效、便捷、协议开放、易于冗余等诸多优点,被越来越多的工业现场所采用。西门子SIMATIC S7-1200/1500系列PLC集成有Profinet接口,具有实时性、开放性,使用TCP/IP和IT标准,符合基于工业以太网的…...
ZYNQ学习记录FPGA(一)ZYNQ简介
一、知识准备 1.一些术语,缩写和概念: 1)ZYNQ全称:ZYNQ7000 All Pgrammable SoC 2)SoC:system on chips(片上系统),对比集成电路的SoB(system on board) 3)ARM:处理器…...
针对药品仓库的效期管理问题,如何利用WMS系统“破局”
案例: 某医药分销企业,主要经营各类药品的批发与零售。由于药品的特殊性,效期管理至关重要,但该企业一直面临效期问题的困扰。在未使用WMS系统之前,其药品入库、存储、出库等环节的效期管理主要依赖人工记录与检查。库…...
C++--string的模拟实现
一,引言 string的模拟实现是只对string对象中给的主要功能经行模拟实现,其目的是加强对string的底层了解,以便于在以后的学习或者工作中更加熟练的使用string。本文中的代码仅供参考并不唯一。 二,默认成员函数 string主要有三个成员变量,…...
