python学opencv|读取图像(三十九 )阈值处理Otsu方法
【1】引言
前序学习了5种阈值处理方法,包括(反)阈值处理、(反)零值处理和截断处理,还学习了一种自适应处理方法,相关文章链接为:
python学opencv|读取图像(三十三)阈值处理-灰度图像-CSDN博客
python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客
python学opencv|读取图像(三十五)反阈值处理-CSDN博客
python学opencv|读取图像(三十六)(反)零值处理-CSDN博客
python学opencv|读取图像(三十七 )截断处理-CSDN博客
python学opencv|读取图像(三十八 )阈值自适应处理-CSDN博客
在上述所有文章中,阈值开关都是自己随机设置的,因此,实际效果可能未必是最佳。
如果有一种方法,可以让函数自动选取最佳阈值开关,那就能时刻获得最佳的阈值处理效果,这个方法就是:“阈值处理参数+Otsu”。
【2】官网教程
Otsu方法的说明,点击下方链接可以直达:
OpenCV: Miscellaneous Image Transformations
官网页面关于Otsu方法的说明为:
图1
实际上,使用Otsu方法时,必须配合前述5种阈值处理方法一起进行阈值调整。因为Otsu方法本身是来辅助选择最优的阈值开关,所以阈值处理方法还需要保留。
在下述官网示例说明中,我们会看到这一解释:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起
OpenCV: Image Thresholding
图2
【3】代码测试
首先引入必要的模块和原图像:
import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像# 读取图片-函数转化灰度图
src1 = cv.imread('srcf.png') #读取图像
dst1=cv.cvtColor(src1,cv.COLOR_BGR2GRAY) #转化为灰度图dstt=np.hstack((dst,dst1)) #两种灰度图拼接在一起
然后进行Otsu处理,为进行对比,也做了零值处理:
#阈值处理
t2,dst2=cv.threshold(src,58,158,cv.THRESH_TOZERO) #零值-阈值开关58,阈值上限158
t3,dst3=cv.threshold(src,0,255,cv.THRESH_TOZERO+cv.THRESH_OTSU) #零值+OTSU
dsto=np.hstack((dst2,dst3)) #两种阈值处理图拼接在一起
之后显示图像和保存图像:
# 在屏幕展示效果
cv.imshow('srcdstt', dstt) # 在屏幕展示效果
cv.imshow('srcdsto', dsto) # 在屏幕展示效果#显示BGR值
print("dst1像素数为[100,100]位置处的BGR=", dst1[100, 100]) # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100, 100]) # 获取像素数为[100,100]位置处的BGR
print("dst3像素数为[100,100]位置处的BGR=", dst3[100, 100]) # 获取像素数为[100,100]位置处的BGR#保存图像
cv.imwrite('srcf-dstt.png', dstt) # 保存图像
cv.imwrite('srcf-dst2.png', dst3) # 保存图像
cv.imwrite('srcf-dsto.png', dsto) # 保存图像cv.waitKey() # 图像不会自动关闭
cv.destroyAllWindows() # 释放所有窗口
此处使用的原始图像为:
图3
转化后的灰度图为:
图4 灰度图
进行单纯零值处理和零值处理+OTSU处理后的图像为:
图5 单纯零值处理和零值处理+OTSU处理
由图5可见,右侧为零值处理+OTSU处理后的图像,更趋向于突出轮廓边线。
由于OTSU处理图像会自动选择最佳阈值开关,所以我们输出了特定位置的BGR值:
图6 特定像素点BGR值
dst1为转后的原始灰度图,dst2为单纯零值处理图,dst3为零值处理+OTSU处理后的图像。
由图6可见,零值处理+OTSU处理后的图像,自动选择的阈值开关也没有超过156,所以这两个图在像素点[100][100]处的BGR值完全相等。
【4】细节说明
使用Otsu方法的时候,依然调用cv2.threshold()函数,虽然此时Otsu会自动选择阈值开关,但仍然需要在阈值开关的位置写"0"。
图7 提前设定阈值开关为0
【5】总结
掌握了python+opencv实现Otsu自动调整阈值开关的操作技巧。
相关文章:

python学opencv|读取图像(三十九 )阈值处理Otsu方法
【1】引言 前序学习了5种阈值处理方法,包括(反)阈值处理、(反)零值处理和截断处理,还学习了一种自适应处理方法,相关文章链接为: python学opencv|读取图像(三十三)阈值处理-灰度图像-CSDN博客 python学o…...
GBase8c aes_encrypt和aes_decrypt函数
在数据库中,aes_encrypt和aes_decrypt函数进行加解密时使用的块加密模式。 GBase8c 与 MySQL 的aes_encrypt和aes_decrypt函数区别: 1、GBase8c 中的初始化向量init_vector不能为空 2、MySQL的加密模块block_encryption_mode 为aes-128-ecb,…...

【2024年华为OD机试】(B卷,100分)- 数据分类 (Java JS PythonC/C++)
一、问题描述 题目描述 对一个数据a进行分类,分类方法为: 此数据a(四个字节大小)的四个字节相加对一个给定的值b取模,如果得到的结果小于一个给定的值c,则数据a为有效类型,其类型为取模的值;如果得到的结果大于或者等于c,则数据a为无效类型。 比如一个数据a=0x010…...

机器学习 vs 深度学习
目录 一、机器学习 1、实现原理 2、实施方法 二、深度学习 1、与机器学习的联系与区别 2、神经网络的历史发展 3、神经网络的基本概念 一、机器学习 1、实现原理 训练(归纳)和预测(演绎) 归纳: 从具体案例中抽象一般规律…...

flutter_学习记录_00_环境搭建
1.参考文档 Mac端Flutter的环境配置看这一篇就够了 flutter的中文官方文档 2. 本人环境搭建的背景 本人的电脑的是Mac的,iOS开发,所以iOS开发环境本身是可用的;外加Mac电脑本身就会配置Java的环境。所以,后面剩下的就是&#x…...

SpringBoot如何自定义Starter ?
大家好,我是锋哥。今天分享关于【SpringBoot如何自定义Starter ?】面试题。希望对大家有帮助; SpringBoot如何自定义Starter ? 1000道 互联网大厂Java工程师 精选面试题-Java资源分享网 在 Spring Boot 中,自定义 Starter 是一种将应用程…...
前沿技术对比:大模型技术为什么发展远快于区块链技术,中英对照解释
文章目录 前言1、技术复杂性与成熟度 / Technical Complexity and Maturity2.、应用场景与行业需求 / Application Scenarios and Industry Demand3、监管与法律问题 / Regulatory and Legal Issues4、去中心化与网络效应 / Decentralization and Network Effects5、能源消耗与…...

WordPress果果对象存储插件
将网站上的图片等静态资源文件上传至七牛云对象存储,可以减轻服务器文件存储压力,提升静态文件访问速度,从而加速网站访问速度。 支持:阿里云对象存储、华为云对象存储、百度云对象存储、腾讯云对象存储、七牛云对象存储。 下载…...
elk 安装
创建elk网络 docker network create -d bridge elkelasticsearch 创建目录 mkdir -p /data/elasticsearch/{conf,logs,data,plugins}vim /data/elasticsearch/conf/elasticsearch.ymlcluster.name: "es-cluster" network.host: 0.0.0.0 xpack.security.enabled: tr…...

Python 预训练:打通视觉与大语言模型应用壁垒——Python预训练视觉和大语言模型
大语言模型是一种由包含数百亿甚至更多参数的深度神经网络构建的语言模型,通常使用自监督学习方法通过大量无标签文本进行训练,是深度学习之后的又一大人工智能技术革命。 大语言模型的发展主要经历了基础模型阶段(2018 年到2021年)、能力探索阶段(2019年…...
OpenCV相机标定与3D重建(63)校正图像的畸变函数undistort()的使用
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 转换图像以补偿镜头畸变。 该函数通过变换图像来补偿径向和切向镜头畸变。 此函数仅仅是 initUndistortRectifyMap(使用单位矩阵 R…...
用 Java 发送 HTML 内容并带附件的电子邮件
实现思路 首先,设置邮件服务器的相关属性,包括是否需要认证、使用的邮件协议、服务器地址、端口等。 创建一个会话对象,使用 Session.getInstance 方法,并提供邮件服务器的属性和认证信息。 创建一个 MimeMessage 对象作为邮件消…...
【Day24 LeetCode】贪心Ⅱ
一、贪心Ⅱ 1、买卖股票的最佳时机 II 122 这题第一想法是使用动态规划做,每天有两个状态,持有股票和非持有股票,每次计算这两个状态下的最优值。 class Solution { public:int maxProfit(vector<int>& prices) {//表示当前 没有…...

vue3+elementPlus之后台管理系统(从0到1)(day3-管理员管理)
管理员管理 搭建管理员页面 在views中创建一个manager文件夹,并创建ManagerIndexView.vue、MangagerListView.vue、UserList.vue <!-- src/views/manager/ManagerIndexView.vue --> <template><!-- 作为一个占位符,用于渲染与当前 URL…...
上位机知识篇---ROS2命令行命令静态链接库动态链接库
文章目录 前言第一部分:ROS2命令行命令1. 基础命令(1)ros2 run(2)ros2 launch(3)ros2 node(4)ros2 topic(5)ros2 service(6࿰…...

2025/1/21 学习Vue的第四天
睡觉。 --------------------------------------------------------------------------------------------------------------------------------- 11.Object.defineProperty 1.在我们之前学习JS的时候,普通得定义一个对象与属性。 <!DOCTYPE html> <h…...

云计算、AI与国产化浪潮下DBA职业之路风云变幻,如何谋破局启新途?
引言 在近日举办的一场「云和恩墨大讲堂」直播栏目中,云和恩墨联合创始人李轶楠、副总经理熊军和欧冶云商数据库首席薛晓刚共同探讨了DBA的现状与未来发展。三位专家从云计算、人工智能、国产化替代等多个角度进行了深入的分析和探讨,为从业者提供了宝贵…...

Linux内核编程(二十一)USB驱动开发-键盘驱动
一、驱动类型 USB 驱动开发主要分为两种:主机侧的驱动程序和设备侧的驱动程序。一般我们编写的都是主机侧的USB驱动程序。 主机侧驱动程序用于控制插入到主机中的 USB 设备,而设备侧驱动程序则负责控制 USB 设备如何与主机通信。由于设备侧驱动程序通常与…...

模拟算法习题篇
在算法中,模拟是一种通过计算机程序来模拟现实世界中的过程或系统行为的方法。它的核心思想是根据题目给定的规则和逻辑,按照步骤细致地重现事件的发展流程,从而获得最终结果。 解题时如何使用模拟算法: 理解题目规则:…...
蓝桥杯真题 - 翻转 - 题解
题目链接:https://www.lanqiao.cn/problems/3520/learning/ 个人评价:难度 1 星(满星:5) 前置知识:无 整体思路 贪心,除了第一位跟最后一位,其它字符,每当 S [ i ] ≠…...
ubuntu搭建nfs服务centos挂载访问
在Ubuntu上设置NFS服务器 在Ubuntu上,你可以使用apt包管理器来安装NFS服务器。打开终端并运行: sudo apt update sudo apt install nfs-kernel-server创建共享目录 创建一个目录用于共享,例如/shared: sudo mkdir /shared sud…...
SciencePlots——绘制论文中的图片
文章目录 安装一、风格二、1 资源 安装 # 安装最新版 pip install githttps://github.com/garrettj403/SciencePlots.git# 安装稳定版 pip install SciencePlots一、风格 简单好用的深度学习论文绘图专用工具包–Science Plot 二、 1 资源 论文绘图神器来了:一行…...

Opencv中的addweighted函数
一.addweighted函数作用 addweighted()是OpenCV库中用于图像处理的函数,主要功能是将两个输入图像(尺寸和类型相同)按照指定的权重进行加权叠加(图像融合),并添加一个标量值&#x…...

ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
关于 WASM:1. WASM 基础原理
一、WASM 简介 1.1 WebAssembly 是什么? WebAssembly(WASM) 是一种能在现代浏览器中高效运行的二进制指令格式,它不是传统的编程语言,而是一种 低级字节码格式,可由高级语言(如 C、C、Rust&am…...
Webpack性能优化:构建速度与体积优化策略
一、构建速度优化 1、升级Webpack和Node.js 优化效果:Webpack 4比Webpack 3构建时间降低60%-98%。原因: V8引擎优化(for of替代forEach、Map/Set替代Object)。默认使用更快的md4哈希算法。AST直接从Loa…...

逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
掌握 HTTP 请求:理解 cURL GET 语法
cURL 是一个强大的命令行工具,用于发送 HTTP 请求和与 Web 服务器交互。在 Web 开发和测试中,cURL 经常用于发送 GET 请求来获取服务器资源。本文将详细介绍 cURL GET 请求的语法和使用方法。 一、cURL 基本概念 cURL 是 "Client URL" 的缩写…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...

CSS3相关知识点
CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...