当前位置: 首页 > news >正文

嵌入式知识点总结 C/C++ 专题提升(七)-位操作

  针对于嵌入式软件杂乱的知识点总结起来,提供给读者学习复习对下述内容的强化。

目录

1.位操作基础

2.如何求解整型数的二进制表示中1的个数 ?

3.如何求解二进制中0的个数

4.交换两个变量的值,不使用第三个变量。即a=3,b=5,交换之后a=5,b=3:

5.给定一个整型变量a,写两段代码,第一个设置a的bit3,第二个清除a 的bit 3。在以上两个操作中,要保持其它位不变。


1.位操作基础

位操作(Bitwise Operations)是直接对二进制位进行操作的一类运算,广泛应用于嵌入式开发、系统编程、算法设计等领域。以下是常用的位操作及其作用、示例。

按位与 (&)

将两个数的每个位进行与运算。

规则:1 & 1 = 1,其余为 0。

作用:用于清零某些位,提取特定位。

示例:清除一个数的低 4 位

int x = 0b11010101; // 213
int result = x & 0b11110000; // 清除低4位
printf("Result: 0x%x\n", result); // 输出: 0xd0

按位或 (|)

将两个数的每个位进行或运算。

规则:0 | 0 = 0,其余为 1。

作用:用于设置某些位为 1。

示例:设置某数的第 3 位为 1

int x = 0b11000001; // 193
int result = x | 0b00000100; // 设置第3位
printf("Result: 0x%x\n", result); // 输出: 0xc5

按位异或 (^)

将两个数的每个位进行异或运算。

规则:相同为 0,不同为 1。

作用:用于翻转特定位,或无进位加法。

示例:翻转某数的第 3 位

int x = 0b11000001; // 193
int result = x ^ 0b00000100; // 翻转第3位
printf("Result: 0x%x\n", result); // 输出: 0xc5

按位取反 (~)

将每个位取反,0 变 1,1 变 0。

作用:用于生成补码、求反值。

示例:取反某数

int x = 0b00001111; // 15
int result = ~x; // 取反
printf("Result: 0x%x\n", result); // 输出: 0xfffffff0 (补码表示)

左移 (<<)

将二进制位左移,低位补 0。

作用:快速乘以 2 的幂。

示例:将某数左移 2 位

int x = 5; // 0b0101
int result = x << 2; // 左移2位
printf("Result: %d\n", result); // 输出: 20

右移 (>>)

将二进制位右移,高位补符号位(算术右移)或 0(逻辑右移)。

作用:快速除以 2 的幂。

示例:将某数右移 2 位

int x = 20; // 0b00010100
int result = x >> 2; // 右移2位
printf("Result: %d\n", result); // 输出: 5

在嵌入式开发中,位操作非常常见,以下是一些典型应用场景和代码示例:

1. 控制寄存器的位操作

设置某些位

设置寄存器中某些位为 1,比如配置 GPIO 为输出模式。

#define GPIO_DIR_REG  (*(volatile unsigned int *)0x40020000) // 假设寄存器地址
#define GPIO_PIN_3    (1 << 3) // 第3位表示GPIO3void set_gpio_output() {GPIO_DIR_REG |= GPIO_PIN_3; // 设置第3位为1
}

清除某些位

清除寄存器中某些位为 0,比如禁用某外设功能。

void disable_feature() {GPIO_DIR_REG &= ~GPIO_PIN_3; // 清除第3位
}

2. 检测某个位的状态

判断某引脚状态

检测某引脚的高低电平。

#define GPIO_INPUT_REG (*(volatile unsigned int *)0x40020010) // 输入寄存器int is_pin_high() {return (GPIO_INPUT_REG & GPIO_PIN_3) ? 1 : 0; // 检查第3位是否为1
}

3. 翻转某个位

翻转 LED 状态

嵌入式中控制 LED 灯时,经常需要翻转某 GPIO 的状态。

#define GPIO_OUTPUT_REG (*(volatile unsigned int *)0x40020004) // 输出寄存器void toggle_led() {GPIO_OUTPUT_REG ^= GPIO_PIN_3; // 翻转第3位
}

4. 提取寄存器的特定位

获取外设状态

从状态寄存器中提取某外设的状态位。

#define STATUS_REG  (*(volatile unsigned int *)0x40020020) // 状态寄存器
#define DEVICE_READY_BIT (1 << 7) // 第7位表示设备准备好int is_device_ready() {return (STATUS_REG & DEVICE_READY_BIT) >> 7; // 提取第7位
}

5. 多位配置操作

设置多位

一次性设置多个位,比如配置多个 GPIO 为输出模式。

#define GPIO_OUTPUT_MASK (GPIO_PIN_3 | GPIO_PIN_4 | GPIO_PIN_5)void configure_multiple_gpio() {GPIO_DIR_REG |= GPIO_OUTPUT_MASK; // 设置GPIO3、GPIO4、GPIO5为1
}

清除多位

清除多个位。

void clear_multiple_gpio() {GPIO_DIR_REG &= ~GPIO_OUTPUT_MASK; // 清除GPIO3、GPIO4、GPIO5
}

6. 数据压缩与解压

压缩数据

将多个小数据合并到一个 32 位变量中。

unsigned int pack_data(unsigned char a, unsigned char b, unsigned char c, unsigned char d) {return (a << 24) | (b << 16) | (c << 8) | d;
}

解压数据

从一个变量中提取多个字段。

void unpack_data(unsigned int packed, unsigned char *a, unsigned char *b, unsigned char *c, unsigned char *d) {*a = (packed >> 24) & 0xFF;*b = (packed >> 16) & 0xFF;*c = (packed >> 8) & 0xFF;*d = packed & 0xFF;
}

2.如何求解整型数的二进制表示中1的个数 ?

#include <stdio.h>int func(int x) {int countx = 0; // 计数器初始化while (x) {countx++;x = x & (x - 1); // 清除最低位的1}return countx;
}int main() {printf("%d\n", func(9999)); // 调用函数并打印结果return 0;
}

func 函数

用于计算输入整数 x 的二进制表示中有多少个 1

x = x & (x - 1) 的作用是清除 x 中最低位的 1,直到 x 变为 0

每次清除一个 1 时,countx 增加 1。

main 函数

调用 func(9999),计算 9999 的二进制表示中有多少个 1

使用 printf 输出结果。

输出结果

9999 的二进制表示为 10011100001111,其中有 8 个 1

3.如何求解二进制中0的个数还有1的个数

#include <stdio.h>void count_ones_and_zeros(int x) {int count_ones = 0, count_zeros = 0;while (x) {if (x & 1) {count_ones++;  // 如果最低位是 1} else {count_zeros++;  // 如果最低位是 0}x >>= 1;  // 右移一位,检查下一位}// 如果 x 最后的结果为 0,还需要考虑 x 可能有零填充的位// 假设我们处理的整数位数为 32 位int total_bits = sizeof(x) * 8;  // 通常为 32 位(对于 32 位整数)count_zeros = total_bits - count_ones - count_zeros;printf("1's: %d, 0's: %d\n", count_ones, count_zeros);
}int main() {int numbers[] = {25, 15, 5};for (int i = 0; i < 3; i++) {printf("For %d: ", numbers[i]);count_ones_and_zeros(numbers[i]);}return 0;
}

4.交换两个变量的值,不使用第三个变量。即a=3,b=5,交换之后a=5,b=3:

#include <stdio.h>int main() {int a = 3, b = 5;printf("Before swap: a = %d, b = %d\n", a, b);a = a + b; // a 变为 8 (3 + 5)b = a - b; // b 变为 3 (8 - 5)a = a - b; // a 变为 5 (8 - 3)printf("After swap: a = %d, b = %d\n", a, b);return 0;
}

a = a + ba 保存了 ab 的和。

b = a - bb 通过从 a 的和中减去原来的 b 值,得到原来的 a 值。

a = a - ba 通过从和中减去新的 b 值,得到原来的 b 值。

#include <stdio.h>int main() {int a = 3, b = 5;// a 0011  b 0101printf("Before swap: a = %d, b = %d\n", a, b);a = a ^ b; // a 变为 6 (3 ^ 5) 0011 0101  - 0110b = a ^ b; // b 变为 3 (6 ^ 5) 0110 0101  - 0011a = a ^ b; // a 变为 5 (6 ^ 3) 0110 0011  - 0101printf("After swap: a = %d, b = %d\n", a, b);return 0;
}

a = a ^ ba 变成了 ab 的异或值。

b = a ^ bb 通过异或 a(当前是 a ^ b)得到原来的 a 值。

a = a ^ ba 通过异或 b(当前是原来的 a 值)得到原来的 b 值。

5.给定一个整型变量a,写两段代码,第一个设置a的bit3,第二个清除a 的bit 3。在以上两个操作中,要保持其它位不变。

#include <stdio.h>
#define BIT3 (1<<3)
static int a=5;
void Set_Bit3(void){a |= BIT3;
}
void Clear_Bit3(void){a &= ~BIT3;
}
int main() {Set_Bit3();Clear_Bit3();printf("%d",a);return 0;
}

假设 a 的初始值为 5,其二进制为 00000101

初始值打印:5

设置第3位后:

BIT3 = 1 << 3 = 00001000

a | BIT3 = 00000101 | 00001000 = 00001101,结果为 13

打印:13

清除第3位后:

~BIT3 = ~00001000 = 11110111

a & ~BIT3 = 00001101 & 11110111 = 00000101,结果为 5

打印:5

相关文章:

嵌入式知识点总结 C/C++ 专题提升(七)-位操作

针对于嵌入式软件杂乱的知识点总结起来&#xff0c;提供给读者学习复习对下述内容的强化。 目录 1.位操作基础 2.如何求解整型数的二进制表示中1的个数 ? 3.如何求解二进制中0的个数 4.交换两个变量的值&#xff0c;不使用第三个变量。即a3,b5,交换之后a5,b3: 5.给定一个…...

新星杯-ESP32智能硬件开发--ESP32的I/O组成

本博文内容导读&#x1f4d5;&#x1f389;&#x1f525; ESP32系统的基础外设开发&#xff1a;IO_MUX和GPIO矩阵 IO_MUX和GPIO矩阵 ESP32的I/O组成了与外部世界交互的基础&#xff0c;ESP32芯片有34个物理GPIO引脚。每个引脚都可用作一个通用I/O&#xff0c;或者连接一个内部…...

航空航天混合动力(7)航空航天分布式电推进系统

航空航天分布式电推进系统 1.概述2.分布式电推进系统组成3.关键技术4.分布式电推进系统优势5.国内外研究情况5.1 国外5.2 国内6.分布式电推进系统应用场景6.1 航空领域6.2 航天领域tips:资料来自网上,仅供参考学习使用 1.概述 分布式推进系统是指飞行器推力由位于整个航空器…...

AIGC视频生成明星——Emu Video模型

大家好&#xff0c;这里是好评笔记&#xff0c;公主号&#xff1a;Goodnote&#xff0c;专栏文章私信限时Free。本文详细介绍Meta的视频生成模型Emu Video&#xff0c;作为Meta发布的第二款视频生成模型&#xff0c;在视频生成领域发挥关键作用。 &#x1f33a;优质专栏回顾&am…...

Cyber Security 101-Security Solutions-Firewall Fundamentals(防火墙基础)

了解防火墙并亲身体验 Windows 和 Linux 内置防火墙。 任务1&#xff1a;防火墙的用途是什么 我们看到商场、银行、 餐馆和房屋。这些警卫被安置在 这些区域用于检查进出人员。这 维护此检查的目的是确保没有人在没有 被允许。这个警卫充当了他所在区域和访客之间的一堵墙。 …...

备赛蓝桥杯之第十五届职业院校组省赛第一题:智能停车系统

提示&#xff1a;本篇文章仅仅是作者自己目前在备赛蓝桥杯中&#xff0c;自己学习与刷题的学习笔记&#xff0c;写的不好&#xff0c;欢迎大家批评与建议 由于个别题目代码量与题目量偏大&#xff0c;请大家自己去蓝桥杯官网【连接高校和企业 - 蓝桥云课】去寻找原题&#xff0…...

Docker核心命令与Yocto项目的高效应用

随着软件开发逐渐向分布式和容器化方向演进&#xff0c;Docker 已成为主流的容器化技术之一。它通过标准化的环境配置、资源隔离和高效的部署流程&#xff0c;大幅提高了开发和构建效率。Yocto 项目作为嵌入式 Linux 系统构建工具&#xff0c;与 Docker 的结合进一步增强了开发…...

idea plugin插件开发——入门级教程(IntelliJ IDEA Plugin)

手打不易&#xff0c;如果转摘&#xff0c;请注明出处&#xff01; 注明原文&#xff1a;idea plugin插件开发——入门级教程&#xff08;IntelliJ IDEA Plugin&#xff09;-CSDN博客 目录 前言 官方 官方文档 代码示例 开发前必读 Intellij、Gradle、JDK 版本关系 plu…...

61,【1】BUUCTF WEB BUU XSS COURSE 11

进入靶场 左边是吐槽&#xff0c;右边是登录&#xff0c;先登录试试 admin 123456 admiin# 123456 admin"# 123456 不玩了&#xff0c;先去回顾下xss 回顾完就很尴尬了&#xff0c;我居然用SQL的知识去做xss的题 重来 吐槽这里有一个输入框&#xff0c;容易出现存储型…...

开发环境搭建-1:配置 WSL (类 centos 的 oracle linux 官方镜像)

一些 Linux 基本概念 个人理解&#xff0c;并且为了便于理解&#xff0c;可能会存在一些问题&#xff0c;如果有根本上的错误希望大家及时指出 发行版 WSL 的系统是基于特定发行版的特定版本的 Linux 发行版 有固定组织维护的、开箱就能用的 Linux 发行版由固定的团队、社…...

Spring Boot MyBatis Plus 版本兼容问题(记录)

Spring Boot & MyBatis Plus 版本兼容问题&#xff08;Invalid value type for attribute factoryBeanObjectType: java.lang.String&#xff09; 问题描述问题排查1. 检查 MapperScan 的路径2. 项目中没有配置 FactoryBean3. 检查 Spring 和 MyBatis Plus 版本兼容性 解决…...

26. 【.NET 8 实战--孢子记账--从单体到微服务】--需求更新--用户注销、修改用户名、安全设置

在实际开发过程中&#xff0c;项目需求的变更和增加是常见的情况&#xff0c;因此这篇文章我们就模拟一下项目需求新增的情况。 一、需求 项目经理今天提出了新的功能&#xff0c;需要增加重置密码、安全设置、修改用户名、注销账户这四个功能&#xff0c;这四个功能必须是独…...

神经网络|(一)加权平均法,感知机和神经元

【1】引言 从这篇文章开始&#xff0c;将记述对神经网络知识的探索。相关文章都是学习过程中的感悟和理解&#xff0c;如有雷同或者南辕北辙的表述&#xff0c;请大家多多包涵。 【2】加权平均法 在数学课本和数理统计课本中&#xff0c;我们总会遇到求一组数据平均值的做法…...

OpenHarmony OTA升级参考资料记录

OpenHarmony 作为一个开源分布式操作系统,通过其强大的 OTA(Over-The-Air)升级能力,为开发者和厂商提供了一套灵活而安全的系统升级方案。 OTA升级方式 根据升级包的应用方式,OpenHarmony 的 OTA 升级可以分为两种:本地升级和网络OTA升级。 本地升级 本地升级是将已制作…...

在 Kubernetes 上快速安装 KubeSphere v4.1.2

目录标题 安装文档配置repo安装使用插件 安装文档 在 Kubernetes 上快速安装 KubeSphere 配置repo export https_proxy10.10.x.x:7890 helm repo add stable https://charts.helm.sh/stable helm repo update安装 helm upgrade --install -n kubesphere-system --create-name…...

【回忆迷宫——处理方法+DFS】

题目 代码 #include <bits/stdc.h> using namespace std; const int N 250; int g[N][N]; bool vis[N][N]; int dx[4] {0, 0, -1, 1}; int dy[4] {-1, 1, 0, 0}; int nx 999, ny 999, mx, my; int x 101, y 101; //0墙 (1空地 2远方) bool jud(int x, int y) {if…...

华为OD机试真题---战场索敌

华为OD机试真题“战场索敌”是一道考察算法和数据结构应用能力的题目。以下是对该题目的详细解析&#xff1a; 一、题目描述 有一个大小是NM的战场地图&#xff0c;被墙壁’#‘分隔成大小不同的区域。上下左右四个方向相邻的空地’.‘属于同一个区域&#xff0c;只有空地上可…...

计算机网络 (53)互联网使用的安全协议

一、SSL/TLS协议 概述&#xff1a; SSL&#xff08;Secure Sockets Layer&#xff09;安全套接层和TLS&#xff08;Transport Layer Security&#xff09;传输层安全协议是工作在OSI模型应用层的安全协议。SSL由Netscape于1994年开发&#xff0c;广泛应用于基于万维网的各种网络…...

c++算法贪心系列

本篇文章&#xff0c;同大家一起学习贪心算法&#xff01;&#xff01;&#xff01; 第一题 题目链接 2208. 将数组和减半的最少操作次数 - 力扣&#xff08;LeetCode&#xff09; 题目解析 本题重点&#xff1a;最终的数组和要小于原数组和的一半&#xff0c;且求这一操作的…...

【Maui】注销用户,采用“手势”点击label弹窗选择

文章目录 前言一、问题描述二、解决方案三、软件开发&#xff08;源码&#xff09;3.1 方法一&#xff1a;前端绑定3.2 方法二&#xff1a;后端绑定3.3 注销用户的方法 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架&#xff0c;用于使用 C# 和 XAML 创…...

智慧脚下生根,智能井盖监测终端引领城市安全新革命

在繁忙的都市生活中&#xff0c;我们往往只关注地面的繁华与喧嚣&#xff0c;却忽略了隐藏在地面之下的基础设施——井盖。这些看似不起眼的井盖&#xff0c;实则承担着排水、通讯、电力等重要功能&#xff0c;是城市安全运转的重要一环。然而&#xff0c;传统的井盖管理面临着…...

Word2Vec如何优化从中间层到输出层的计算?

文章目录 Word2Vec如何优化从中间层到输出层的计算&#xff1f;用负采样优化中间层到输出层的计算负采样方法的关键思想负采样的例子负采样的采样方法 Word2Vec如何优化从中间层到输出层的计算&#xff1f; 重要性&#xff1a;★★ 用负采样优化中间层到输出层的计算 以词汇…...

第七篇:vue3 计算属性:computed

v-model "firstName". // v-model. 就是双向绑定的意思 <br/> // 通过 v-model 进行绑定姓&#xff1a;<input type"text" v-model "firstName"><br/>名&#xff1a;<input type"text" v-model"lastN…...

搭建k8s集群

一、准备工作&#xff08;所有节点&#xff09; 在开始部署之前&#xff0c;我们需要对所有节点进行以下准备工作。 1.1、关闭防火墙 # 关闭防火墙 systemctl stop firewalld# 禁止防火墙开机自启 systemctl disable firewalld1.2、 关闭 SELinux # 永久关闭 SELinux sed -…...

Android SystemUI——最近任务应用列表(十七)

对于最近任务应用列表来说,在 Android 原生 SystemUI 中是一个单独的组件。 <string-array name="config_systemUIServiceComponents" translatable="false">……<item>com.android.systemui.recents.Recents</item> </string-arra…...

java 根据前端传回的png图片数组,后端加水印加密码生成pdf,返回给前端

前端传回的png图片数组&#xff0c;后端加水印加密码生成pdf&#xff0c;返回给前端 场景&#xff1a;重点&#xff1a;maven依赖controllerservice 场景&#xff1a; 当前需求&#xff0c;前端通过html2canvas将页面报表生成图片下载&#xff0c;可以仍然不满意。 需要java后…...

《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》

在鸿蒙Next的多设备协同场景中&#xff0c;确保人工智能模型轻量化后功能的一致性是一项极具挑战性但又至关重要的任务。以下是一些关键的方法和策略。 统一的模型架构与标准 采用标准化框架&#xff1a;选择如TensorFlow Lite、PyTorch Mobile等在鸿蒙Next上适配良好的轻量化…...

C语言二级

//请编写函数fun()&#xff0c;该函数的功能是&#xff1a;计算并输出给定整数n的所有因 //子&#xff08;不包括1和自身&#xff09;之和。规定n的值不大于1000。例如&#xff0c;在主函数 //中从键盘给n输入的值为856&#xff0c;则输出为&#xff1a;sum 763。 //注意&…...

隐私保护+性能优化,RyTuneX 让你的电脑更快更安全

RyTuneX 是一款专为 Windows 10 和 11 用户量身打造的系统优化工具&#xff0c;采用先进的 WinUI 3 框架开发&#xff0c;以其现代化的设计风格和强大的功能集合脱颖而出。这款工具不仅界面简洁美观&#xff0c;还提供了多样化的系统优化选项&#xff0c;旨在帮助用户最大化设备…...

rust学习-宏的定义与使用

rust学习-宏的定义与使用 声明宏&#xff08;macro_rules! 宏&#xff09;使用方式1. 简单的宏2. 带参数的宏3. 多个模式的宏 过程宏1. 定义过程宏1.1 属性宏1.2 函数宏1.3 派生宏 2. 使用过程宏2.1 属性宏2.2 函数宏2.3 派生宏 在 Rust 中&#xff0c;宏&#xff08;macro&…...