神经网络|(一)加权平均法,感知机和神经元
【1】引言
从这篇文章开始,将记述对神经网络知识的探索。相关文章都是学习过程中的感悟和理解,如有雷同或者南辕北辙的表述,请大家多多包涵。
【2】加权平均法
在数学课本和数理统计课本中,我们总会遇到求一组数据平均值的做法,而获得平均值的计算方法,是丰富且各有深远意义的。
在之前的学习进程中,在对numpy模块进行探索时,曾对平均值函数numpy.average()有过基础探索,相关文章链接为:numpy学习|average()函数基础_numpy average-CSDN博客
在这篇文章中,有一种加权平均值的计算方法,算法原理为:
对于一组数据,每个数据占有的权重不同,计算平均值时,每个数据和各自对应的权重相乘后再叠加。
比如两个数为1和5,对应的权重分别为0.8和0.2,获得这两个数的算术平均值和加权平均值的算法明显不同:
算术平均值计算方法:
加权平均值计算方法:
由上述例子可见,权重会给结果带来显著影响;相应的,掌握权重的分配,会直接影响计算结果的呈现。
【3】感知机
对加权平均值加一层结果判断,就是感知机,继续使用上述示例。
在上述示例中,两个数为1和5,对应的权重分别为0.8和0.2,如果在计算之前就规定,加权平均值只有在不小于2时才有效,其余情况会强制等于0。
那对于上述示例,加权平均值的计算结果是1.8,按照上述规则,此时就会直接赋值为0。
感知机就是一种二元分类器:加权平均值超过一个阈值开关,就会强制赋1,相反则强制赋0。
在opencv的学习进程中,阈值处理的方法与此有很大的相似性:cv.THRESH_BINARY阈值处理的原则是,给定阈值开关,大于开关的像素点,对其BGR值强制赋最大值255,相反则赋0。相关文章的链接为:python学opencv|读取图像(三十四)阈值处理-彩色图像-CSDN博客
相应的,如果把对加权平均值的大小比较写成加法(加阈值开关的负数),可以获得数学表达式:
【4】神经元
神经元是一个生物学概念,为便于理解,这里主要概述。
典型的神经元结构包括:细胞体和细胞突起,细胞体理解为神经元的处理中枢,细胞突起包括树突和轴突。
(树突可以理解为沿着神经元细胞体的边缘衍生出的小突起,数量多,可能叫做径向突起更便于理解;轴突可以理解为从神经元细胞体伸出来的突起,这个突起只有一个,在轴突的末端,和其他神经元相互连接的部分叫做突触。把树突理解为径向突起纯粹是为了和轴向突起进行对比,没有实际意义,请谅解。)
神经元的状态主要有两种:兴奋和抑制。
树突把兴奋信号传给细胞体,轴突通过突触把兴奋信号从一个神经元传给另一个神经元。
【5】总结
神经元只有兴奋和抑制的工作模式很像一种二元法则,非此即彼。
基于此,神经元可以理解为一种生物意义上的感知机,而感知机是对加权平均值进行阈值判断的二元分类器。
相关文章:
神经网络|(一)加权平均法,感知机和神经元
【1】引言 从这篇文章开始,将记述对神经网络知识的探索。相关文章都是学习过程中的感悟和理解,如有雷同或者南辕北辙的表述,请大家多多包涵。 【2】加权平均法 在数学课本和数理统计课本中,我们总会遇到求一组数据平均值的做法…...
OpenHarmony OTA升级参考资料记录
OpenHarmony 作为一个开源分布式操作系统,通过其强大的 OTA(Over-The-Air)升级能力,为开发者和厂商提供了一套灵活而安全的系统升级方案。 OTA升级方式 根据升级包的应用方式,OpenHarmony 的 OTA 升级可以分为两种:本地升级和网络OTA升级。 本地升级 本地升级是将已制作…...
在 Kubernetes 上快速安装 KubeSphere v4.1.2
目录标题 安装文档配置repo安装使用插件 安装文档 在 Kubernetes 上快速安装 KubeSphere 配置repo export https_proxy10.10.x.x:7890 helm repo add stable https://charts.helm.sh/stable helm repo update安装 helm upgrade --install -n kubesphere-system --create-name…...
【回忆迷宫——处理方法+DFS】
题目 代码 #include <bits/stdc.h> using namespace std; const int N 250; int g[N][N]; bool vis[N][N]; int dx[4] {0, 0, -1, 1}; int dy[4] {-1, 1, 0, 0}; int nx 999, ny 999, mx, my; int x 101, y 101; //0墙 (1空地 2远方) bool jud(int x, int y) {if…...
华为OD机试真题---战场索敌
华为OD机试真题“战场索敌”是一道考察算法和数据结构应用能力的题目。以下是对该题目的详细解析: 一、题目描述 有一个大小是NM的战场地图,被墙壁’#‘分隔成大小不同的区域。上下左右四个方向相邻的空地’.‘属于同一个区域,只有空地上可…...
计算机网络 (53)互联网使用的安全协议
一、SSL/TLS协议 概述: SSL(Secure Sockets Layer)安全套接层和TLS(Transport Layer Security)传输层安全协议是工作在OSI模型应用层的安全协议。SSL由Netscape于1994年开发,广泛应用于基于万维网的各种网络…...
c++算法贪心系列
本篇文章,同大家一起学习贪心算法!!! 第一题 题目链接 2208. 将数组和减半的最少操作次数 - 力扣(LeetCode) 题目解析 本题重点:最终的数组和要小于原数组和的一半,且求这一操作的…...
【Maui】注销用户,采用“手势”点击label弹窗选择
文章目录 前言一、问题描述二、解决方案三、软件开发(源码)3.1 方法一:前端绑定3.2 方法二:后端绑定3.3 注销用户的方法 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架,用于使用 C# 和 XAML 创…...
智慧脚下生根,智能井盖监测终端引领城市安全新革命
在繁忙的都市生活中,我们往往只关注地面的繁华与喧嚣,却忽略了隐藏在地面之下的基础设施——井盖。这些看似不起眼的井盖,实则承担着排水、通讯、电力等重要功能,是城市安全运转的重要一环。然而,传统的井盖管理面临着…...
Word2Vec如何优化从中间层到输出层的计算?
文章目录 Word2Vec如何优化从中间层到输出层的计算?用负采样优化中间层到输出层的计算负采样方法的关键思想负采样的例子负采样的采样方法 Word2Vec如何优化从中间层到输出层的计算? 重要性:★★ 用负采样优化中间层到输出层的计算 以词汇…...
第七篇:vue3 计算属性:computed
v-model "firstName". // v-model. 就是双向绑定的意思 <br/> // 通过 v-model 进行绑定姓:<input type"text" v-model "firstName"><br/>名:<input type"text" v-model"lastN…...
搭建k8s集群
一、准备工作(所有节点) 在开始部署之前,我们需要对所有节点进行以下准备工作。 1.1、关闭防火墙 # 关闭防火墙 systemctl stop firewalld# 禁止防火墙开机自启 systemctl disable firewalld1.2、 关闭 SELinux # 永久关闭 SELinux sed -…...
Android SystemUI——最近任务应用列表(十七)
对于最近任务应用列表来说,在 Android 原生 SystemUI 中是一个单独的组件。 <string-array name="config_systemUIServiceComponents" translatable="false">……<item>com.android.systemui.recents.Recents</item> </string-arra…...
java 根据前端传回的png图片数组,后端加水印加密码生成pdf,返回给前端
前端传回的png图片数组,后端加水印加密码生成pdf,返回给前端 场景:重点:maven依赖controllerservice 场景: 当前需求,前端通过html2canvas将页面报表生成图片下载,可以仍然不满意。 需要java后…...
《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
在鸿蒙Next的多设备协同场景中,确保人工智能模型轻量化后功能的一致性是一项极具挑战性但又至关重要的任务。以下是一些关键的方法和策略。 统一的模型架构与标准 采用标准化框架:选择如TensorFlow Lite、PyTorch Mobile等在鸿蒙Next上适配良好的轻量化…...
C语言二级
//请编写函数fun(),该函数的功能是:计算并输出给定整数n的所有因 //子(不包括1和自身)之和。规定n的值不大于1000。例如,在主函数 //中从键盘给n输入的值为856,则输出为:sum 763。 //注意&…...
隐私保护+性能优化,RyTuneX 让你的电脑更快更安全
RyTuneX 是一款专为 Windows 10 和 11 用户量身打造的系统优化工具,采用先进的 WinUI 3 框架开发,以其现代化的设计风格和强大的功能集合脱颖而出。这款工具不仅界面简洁美观,还提供了多样化的系统优化选项,旨在帮助用户最大化设备…...
rust学习-宏的定义与使用
rust学习-宏的定义与使用 声明宏(macro_rules! 宏)使用方式1. 简单的宏2. 带参数的宏3. 多个模式的宏 过程宏1. 定义过程宏1.1 属性宏1.2 函数宏1.3 派生宏 2. 使用过程宏2.1 属性宏2.2 函数宏2.3 派生宏 在 Rust 中,宏(macro&…...
【学习总结|DAY032】后端Web实战:登录认证
在 Web 后端开发中,登录认证是保障系统安全和用户数据隐私的关键环节。本文将结合实际开发案例,深入探讨登录功能与登录校验的实现思路和技术细节,希望能帮助读者更好地掌握这一重要知识点。 一、登录功能实现 1.1 思路分析 登录功能的核心…...
leetcode 123. 买卖股票的最佳时机 III
题目:123. 买卖股票的最佳时机 III - 力扣(LeetCode) O(N)的算法: f[i] max(max(0, prices[i] - min(prices[0], prices[1], ... , prices[i - 1)), f[i - 1]); g[i] max(max(0, max(prices[i 1], prices[i 2], ... , pric…...
Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误
HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误,它们的含义、原因和解决方法都有显著区别。以下是详细对比: 1. HTTP 406 (Not Acceptable) 含义: 客户端请求的内容类型与服务器支持的内容类型不匹…...
树莓派超全系列教程文档--(62)使用rpicam-app通过网络流式传输视频
使用rpicam-app通过网络流式传输视频 使用 rpicam-app 通过网络流式传输视频UDPTCPRTSPlibavGStreamerRTPlibcamerasrc GStreamer 元素 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 使用 rpicam-app 通过网络流式传输视频 本节介绍来自 rpica…...
DeepSeek 赋能智慧能源:微电网优化调度的智能革新路径
目录 一、智慧能源微电网优化调度概述1.1 智慧能源微电网概念1.2 优化调度的重要性1.3 目前面临的挑战 二、DeepSeek 技术探秘2.1 DeepSeek 技术原理2.2 DeepSeek 独特优势2.3 DeepSeek 在 AI 领域地位 三、DeepSeek 在微电网优化调度中的应用剖析3.1 数据处理与分析3.2 预测与…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
CMake控制VS2022项目文件分组
我们可以通过 CMake 控制源文件的组织结构,使它们在 VS 解决方案资源管理器中以“组”(Filter)的形式进行分类展示。 🎯 目标 通过 CMake 脚本将 .cpp、.h 等源文件分组显示在 Visual Studio 2022 的解决方案资源管理器中。 ✅ 支持的方法汇总(共4种) 方法描述是否推荐…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
视觉slam十四讲实践部分记录——ch2、ch3
ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...
排序算法总结(C++)
目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指:同样大小的样本 **(同样大小的数据)**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...
华为OD机考-机房布局
import java.util.*;public class DemoTest5 {public static void main(String[] args) {Scanner in new Scanner(System.in);// 注意 hasNext 和 hasNextLine 的区别while (in.hasNextLine()) { // 注意 while 处理多个 caseSystem.out.println(solve(in.nextLine()));}}priv…...
RSS 2025|从说明书学习复杂机器人操作任务:NUS邵林团队提出全新机器人装配技能学习框架Manual2Skill
视觉语言模型(Vision-Language Models, VLMs),为真实环境中的机器人操作任务提供了极具潜力的解决方案。 尽管 VLMs 取得了显著进展,机器人仍难以胜任复杂的长时程任务(如家具装配),主要受限于人…...
