Word2Vec如何优化从中间层到输出层的计算?
文章目录
- Word2Vec如何优化从中间层到输出层的计算?
- 用负采样优化中间层到输出层的计算
- 负采样方法的关键思想
- 负采样的例子
- 负采样的采样方法
Word2Vec如何优化从中间层到输出层的计算?
重要性:★★
用负采样优化中间层到输出层的计算
以词汇量为 100 万个、中间层的神经元个数为 100 个的 wod2vec(CBOW 模型)为例,word2vec 进行的处理如下图所示.
词汇量为100万个时的word2vec:上下文是you和goodbye,目标词是say :

词汇量是 100 万个的情况下,模型输出时需要预测所有词(100万个)的概率。此时,在以下两个地方需要很多计算时间:
- 问题1:中间层的神经元和权重矩阵( W o u t W_{out} Wout)的乘积,这个问题在于巨大的矩阵乘积计算
- 问题2:Softmax 层的计算,随着词汇量的增加,Softmax 的计算量也会增加。
因为假定词汇量是 100 万个,Softmax的分母需要进行 100 万次的 exp 计算。这个计算也与词汇量成正比,因此,需要一个可以替代 Softmax 的“轻量”的计算。我们将采用名为负采样(negative sampling) 的方法作为解决方案,使用 Negative Sampling 替代 Softmax,无论词汇量有多大,都可以使计算量保持较低或恒定。
负采样方法的关键思想
负采样方法的关键思想在于二分类(binary classification),更准确地说,是用二分类拟合多分类(multiclass classification),这是理解负采样的重点。现在,我们来考虑如何将多分类问题转化为二分类问题。
比如,让神经网络来回答“当上下文是 you 和 goodbye 时,目标词是 say 吗?”这个问题,这时输出层只需要一个神经元即可。可以认为输出层的神经元输出的是 say 的得分。此时 CBOW 模型进行什么样的处理呢?如下图所示,仅计算目标词的得分的神经网络。

输出层的神经元仅有一个。因此,要计算中间层和输出侧的权重矩阵的乘积,只需要提取 say 对应的列(单词向量),并用它与中间层的神经元计算内积即可。这个计算的详细过程如下图所示:

进行二分类的CBOW模型的全貌图:

至此,我们成功地把要解决的问题从多分类问题转化成了二分类问题。但是,这样问题就被解决了吗?很遗憾,事实并非如此。因为我们目前仅学习了正例(正确答案),还不确定负例(错误答案)会有怎样的结果。
为了把多分类问题处理为二分类问题,对于“正确答案”(正例)和“错误答案”(负例),都需要能够正确地进行分类(二分类)。
那么,我们需要以所有的负例为对象进行学习吗?答案显然是“No”。如果以所有的负例为对象,词汇量将暴增至无法处理。为此,作为一种近似方法,我们将选择若干个(5 个或者 10 个)负例(如何选择将在下文介绍)。也就是说,只使用少数负例。这就是负采样方法的含义。
总而言之,负采样方法既可以求将正例作为目标词时的损失,同时也可以采样(选出)若干个负例,对这些负例求损失。然后,将这些数据(正例和采样出来的负例)的损失加起来,将其结果作为最终的损失。
负采样的例子
负采样的例子(只关注中间层之后的处理,画出基于层的计算图):

负采样的采样方法
负采样的采样方法:基于语料库的统计数据进行采样的方法比随机抽样要好。基于语料库中单词使用频率的采样方法会先计算语料库中各个单词的出现次数,并将其表示为“概率分布”,然后使用这个概率分布对单词进行采样。
根据概率分布多次进行采样的例子:

为了防止低频单词被忽略。word2vec 中提出的负采样对刚才的概率分布增加了一个步骤:对原来的概率分布取 0.75 次方。通过这种方式,取 0.75 次方作为一种补救措施,使得低频单词稍微更容易被抽到。此外,0.75 这个值并没有什么理论依据,也可以设置成0.75 以外的值。
利用“部分”数据而不是“全部”数据,这是一个重要思想。正如人不能全知全能一样,以当前的计算机性能,要处理所有的数据也是不现实的。相反,仅处理对我们有用的那一小部分数据会有更好的效果。负采样技术就是基于这种思想设计的,通过仅关注部分单词实现了计算的高速化。
相关文章:
Word2Vec如何优化从中间层到输出层的计算?
文章目录 Word2Vec如何优化从中间层到输出层的计算?用负采样优化中间层到输出层的计算负采样方法的关键思想负采样的例子负采样的采样方法 Word2Vec如何优化从中间层到输出层的计算? 重要性:★★ 用负采样优化中间层到输出层的计算 以词汇…...
第七篇:vue3 计算属性:computed
v-model "firstName". // v-model. 就是双向绑定的意思 <br/> // 通过 v-model 进行绑定姓:<input type"text" v-model "firstName"><br/>名:<input type"text" v-model"lastN…...
搭建k8s集群
一、准备工作(所有节点) 在开始部署之前,我们需要对所有节点进行以下准备工作。 1.1、关闭防火墙 # 关闭防火墙 systemctl stop firewalld# 禁止防火墙开机自启 systemctl disable firewalld1.2、 关闭 SELinux # 永久关闭 SELinux sed -…...
Android SystemUI——最近任务应用列表(十七)
对于最近任务应用列表来说,在 Android 原生 SystemUI 中是一个单独的组件。 <string-array name="config_systemUIServiceComponents" translatable="false">……<item>com.android.systemui.recents.Recents</item> </string-arra…...
java 根据前端传回的png图片数组,后端加水印加密码生成pdf,返回给前端
前端传回的png图片数组,后端加水印加密码生成pdf,返回给前端 场景:重点:maven依赖controllerservice 场景: 当前需求,前端通过html2canvas将页面报表生成图片下载,可以仍然不满意。 需要java后…...
《探秘鸿蒙Next:如何保障AI模型轻量化后多设备协同功能一致》
在鸿蒙Next的多设备协同场景中,确保人工智能模型轻量化后功能的一致性是一项极具挑战性但又至关重要的任务。以下是一些关键的方法和策略。 统一的模型架构与标准 采用标准化框架:选择如TensorFlow Lite、PyTorch Mobile等在鸿蒙Next上适配良好的轻量化…...
C语言二级
//请编写函数fun(),该函数的功能是:计算并输出给定整数n的所有因 //子(不包括1和自身)之和。规定n的值不大于1000。例如,在主函数 //中从键盘给n输入的值为856,则输出为:sum 763。 //注意&…...
隐私保护+性能优化,RyTuneX 让你的电脑更快更安全
RyTuneX 是一款专为 Windows 10 和 11 用户量身打造的系统优化工具,采用先进的 WinUI 3 框架开发,以其现代化的设计风格和强大的功能集合脱颖而出。这款工具不仅界面简洁美观,还提供了多样化的系统优化选项,旨在帮助用户最大化设备…...
rust学习-宏的定义与使用
rust学习-宏的定义与使用 声明宏(macro_rules! 宏)使用方式1. 简单的宏2. 带参数的宏3. 多个模式的宏 过程宏1. 定义过程宏1.1 属性宏1.2 函数宏1.3 派生宏 2. 使用过程宏2.1 属性宏2.2 函数宏2.3 派生宏 在 Rust 中,宏(macro&…...
【学习总结|DAY032】后端Web实战:登录认证
在 Web 后端开发中,登录认证是保障系统安全和用户数据隐私的关键环节。本文将结合实际开发案例,深入探讨登录功能与登录校验的实现思路和技术细节,希望能帮助读者更好地掌握这一重要知识点。 一、登录功能实现 1.1 思路分析 登录功能的核心…...
leetcode 123. 买卖股票的最佳时机 III
题目:123. 买卖股票的最佳时机 III - 力扣(LeetCode) O(N)的算法: f[i] max(max(0, prices[i] - min(prices[0], prices[1], ... , prices[i - 1)), f[i - 1]); g[i] max(max(0, max(prices[i 1], prices[i 2], ... , pric…...
Apache Tika 详解
Apache Tika是一个开源的、跨平台的库,专门用于检测、提取和解析多种文件格式的元数据。以下是对Apache Tika的详细解析: 一、概述 Apache Tika旨在为各种类型的数据提取提供一个单一的API,它支持多种文件格式,包括文档、图片、…...
ChatGPT被曝存在爬虫漏洞,OpenAI未公开承认
OpenAI的ChatGPT爬虫似乎能够对任意网站发起分布式拒绝服务(DDoS)攻击,而OpenAI尚未承认这一漏洞。 本月,德国安全研究员Benjamin Flesch通过微软的GitHub分享了一篇文章,解释了如何通过向ChatGPT API发送单个HTTP请求…...
Qt——界面优化
在Qt中进行界面优化,可以从以下几个方面入手: 1.使用QWidget:setVisible来控制Widget的 显示和隐藏,而不是删除和重建。 2.使用QPainter直 接绘制组件,避免使用复杂的布局。 3.使用QSS进行样式设置, 减少图片资源的使用。 4.使…...
python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加
【1】引言 前序已经学习了直接在画布上使用掩模,会获得彩色图像的多种叠加效果,相关文章链接为: python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客 这时候如果更进一步,直接…...
Spring MVC和Spring WebFlux的区别
目录 一、编程模型 二、IO处理方式 三、数据流处理 四、适用场景 五、生态系统 在当今的Web开发领域,Spring框架无疑占据着重要的地位。其中,Spring MVC和Spring WebFlux作为Spring框架中用于构建Web应用程序的两个重要模块,各自具有独特…...
Linux探秘坊-------4.进度条小程序
1.缓冲区 #include <stdio.h> int main() {printf("hello bite!");sleep(2);return 0; }执行此代码后,会 先停顿两秒,再打印出hello bite,但是明明打印在sleep前面,为什么会后打印呢? 因为ÿ…...
Llama 3:开源大模型的里程碑式突破
标题:Llama 3:开源大模型的里程碑式突破 文章信息摘要: Meta通过Llama 3展现了开源LLM的重大突破:采用超大规模训练数据和多阶段训练方法(SFT、rejection sampling、PPO和DPO),突破了传统的Chi…...
计算机网络 (56)交互式音频/视频
一、定义与特点 定义:交互式音频/视频是指用户使用互联网和其他人进行实时交互式通信的技术,包括语音、视频图像等多媒体实时通信。 特点: 实时性:音频和视频数据是实时传输和播放的,用户之间可以进行即时的交流。交互…...
STM32 GPIO工作模式
GPIO工作模式 1. GPIO简介2. GPIO工作模式2.1 输入浮空2.2 输入上拉2.3 输入下拉2.4 模拟2.5 开漏输出2.6 推挽输出2.7 开漏式复用功能2.8 推挽式复用功能 1. GPIO简介 GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚,STM32 芯片的 GPI…...
微信小程序之bind和catch
这两个呢,都是绑定事件用的,具体使用有些小区别。 官方文档: 事件冒泡处理不同 bind:绑定的事件会向上冒泡,即触发当前组件的事件后,还会继续触发父组件的相同事件。例如,有一个子视图绑定了b…...
树莓派超全系列教程文档--(61)树莓派摄像头高级使用方法
树莓派摄像头高级使用方法 配置通过调谐文件来调整相机行为 使用多个摄像头安装 libcam 和 rpicam-apps依赖关系开发包 文章来源: http://raspberry.dns8844.cn/documentation 原文网址 配置 大多数用例自动工作,无需更改相机配置。但是,一…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
理解 MCP 工作流:使用 Ollama 和 LangChain 构建本地 MCP 客户端
🌟 什么是 MCP? 模型控制协议 (MCP) 是一种创新的协议,旨在无缝连接 AI 模型与应用程序。 MCP 是一个开源协议,它标准化了我们的 LLM 应用程序连接所需工具和数据源并与之协作的方式。 可以把它想象成你的 AI 模型 和想要使用它…...
新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案
随着新能源汽车的快速普及,充电桩作为核心配套设施,其安全性与可靠性备受关注。然而,在高温、高负荷运行环境下,充电桩的散热问题与消防安全隐患日益凸显,成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
学校时钟系统,标准考场时钟系统,AI亮相2025高考,赛思时钟系统为教育公平筑起“精准防线”
2025年#高考 将在近日拉开帷幕,#AI 监考一度冲上热搜。当AI深度融入高考,#时间同步 不再是辅助功能,而是决定AI监考系统成败的“生命线”。 AI亮相2025高考,40种异常行为0.5秒精准识别 2025年高考即将拉开帷幕,江西、…...
在Ubuntu24上采用Wine打开SourceInsight
1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...
【C++进阶篇】智能指针
C内存管理终极指南:智能指针从入门到源码剖析 一. 智能指针1.1 auto_ptr1.2 unique_ptr1.3 shared_ptr1.4 make_shared 二. 原理三. shared_ptr循环引用问题三. 线程安全问题四. 内存泄漏4.1 什么是内存泄漏4.2 危害4.3 避免内存泄漏 五. 最后 一. 智能指针 智能指…...
Kubernetes 网络模型深度解析:Pod IP 与 Service 的负载均衡机制,Service到底是什么?
Pod IP 的本质与特性 Pod IP 的定位 纯端点地址:Pod IP 是分配给 Pod 网络命名空间的真实 IP 地址(如 10.244.1.2)无特殊名称:在 Kubernetes 中,它通常被称为 “Pod IP” 或 “容器 IP”生命周期:与 Pod …...
