当前位置: 首页 > news >正文

python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加

【1】引言

前序已经学习了直接在画布上使用掩模,会获得彩色图像的多种叠加效果,相关文章链接为:

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客

这时候如果更进一步,直接用两张图片互相叠加,是否会有新的图像出现?这就是本次文章想讨论的内容。

在更早的时候,我们已经掌握了对灰度图像的掩模操作:

python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客

因此,这种图片叠加的操作,应该可以同时作用于灰度图像和彩色图像。

探索图像的叠加效果,需要使用的函数是cv2.add()。

【2】官网教程

点击下述链接,可以直达cv2.add()函数官网说明:

OpenCV: Operations on arrays

官网页面关于cv2.add()函数的说明为:

图1

具体的各个参数的意义为:

void cv::add     (     InputArray     src1,   #输入图像1
        InputArray     src2,                         #输入图像2
        OutputArray     dst,                        #输出图像2
        InputArray     mask = noArray(),    #掩模
        int     dtype = -1 )                           #输出图像的深度,为默认值,暂无需关注

【3】代码测试

【3.1】灰度图像

首先是引入cv2等模块和原始图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png',0) #读取图像
dst=src#输出图像

然后进行图形叠加操作:

#图像叠加
dst1=dst+dst #图像使用“+”叠加
dst2=cv.add(dst,dst) #图像使用“cv.add()函数”叠加

然后在屏幕上展示图像:

#在屏幕展示效果
cv.imshow('srcdst', dst)  # 在屏幕展示效果
cv.imshow('srcdst1', dst1)  # 在屏幕展示效果
cv.imshow('srcdst2', dst1)  # 在屏幕展示效果

为探寻实际的叠加效果,读取了特定像素点的BGR值:

#显示BGR值
print("dst像素数为[258,258]位置处的BGR=", dst[258, 258])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[258,258]位置处的BGR=", dst1[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[258,258]位置处的BGR=", dst2[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100,100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100,100])  # 获取像素数为[100,100]位置处的BGR

之后保存相关图像:

#保存图像
cv.imwrite('srcf-dst.png', dst)  # 保存图像
cv.imwrite('srcf-dst1.png', dst1)  # 保存图像
cv.imwrite('srcf-dst2.png', dst2)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

本文使用的原始图像为:

图2 原始图像

叠加后的图像效果为:

图3 图像使用“+”叠加-灰度图像

图4 图像使用“cv.add()函数”叠加-灰度图像

由图3和图4对比可见:图4相对来说更亮。

这时候,再看特定点的BGR值:

图5 特定像素点BGR值-灰度图像

在像素点[258,258]获得的原始图像dst对应的BGR=71,dst1和dst2在该点对应的BGR=142=2*71,可以明显看到使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加。

在像素点[100,100]获得的原始图像dst对应的BGR=156,dst1在该点对应的BGR=56,dst2在该点对应的BGR=255。实际上,使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加,但对于使用“+”叠加,像素点BGR值超过255后会重新计数,57=156*2-255,但由于像素点是从0开始计算,所以第57个数对应的BGR值为56;使用和“cv.add()函数”叠加,像素点BGR值超过255后会直接截断为255。

【3.2】彩色图像

之后进行彩色图像的零值和反零值处理,这只需要改一行代码,将src = cv.imread('srcun.png',0)改为:

src = cv.imread('srcun.png') #读取图像

直接输出完整代码:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcf.png') #读取图像
dst=src#输出图像#图像叠加
dst1=dst+dst #图像使用“+”叠加
dst2=cv.add(dst,dst) #图像使用“cv.add()函数”叠加#在屏幕展示效果
cv.imshow('srcdst', dst)  # 在屏幕展示效果
cv.imshow('srcdst1', dst1)  # 在屏幕展示效果
cv.imshow('srcdst2', dst2)  # 在屏幕展示效果#显示BGR值
print("dst像素数为[258,258]位置处的BGR=", dst[258, 258])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[258,258]位置处的BGR=", dst1[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[258,258]位置处的BGR=", dst2[258,258])  # 获取像素数为[100,100]位置处的BGR
print("dst像素数为[100,100]位置处的BGR=", dst[100, 100])  # 获取像素数为[100,100]位置处的BGR
print("dst1像素数为[100,100]位置处的BGR=", dst1[100,100])  # 获取像素数为[100,100]位置处的BGR
print("dst2像素数为[100,100]位置处的BGR=", dst2[100,100])  # 获取像素数为[100,100]位置处的BGR#保存图像
cv.imwrite('srcf-c-dst.png', dst)  # 保存图像
cv.imwrite('srcf-c-dst1.png', dst1)  # 保存图像
cv.imwrite('srcf-c-dst2.png', dst2)  # 保存图像cv.waitKey()  # 图像不会自动关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行后获得的图像效果为:

图6 图像使用“+”叠加-灰度图像

图7 图像使用“cv.add()函数”叠加-彩色图像

此时的特定像素点BGR值为:

图8 特定像素点BGR值-彩色图像

对像素点[258,258]和像素点[100,100]获得的原始图像dst对应的BGR和叠加后的图像dst1、dst2在该点对应的BGR分析可知:使用“+”叠加和“cv.add()函数”叠加的效果在本质上都是对该像素点的BGR值进行叠加,但对于使用“+”叠加,像素点BGR值超过255后会重新计数;使用和“cv.add()函数”叠加,像素点BGR值超过255后会直接截断为255。

图9 对比效果

【4】细节说明

如果相互叠加的两个图像原本对应的BGR值分别为BGR1和BGR2,使用“+”叠加时,重新计数的BGR=BGR1+BGR2-255-1。

【5】总结

掌握了python+opencv实现各个像素点BGR叠加的技巧。

相关文章:

python学opencv|读取图像(四十一 )使用cv2.add()函数实现各个像素点BGR叠加

【1】引言 前序已经学习了直接在画布上使用掩模,会获得彩色图像的多种叠加效果,相关文章链接为: python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖-CSDN博客 这时候如果更进一步,直接…...

Spring MVC和Spring WebFlux的区别

目录 一、编程模型 二、IO处理方式 三、数据流处理 四、适用场景 五、生态系统 在当今的Web开发领域,Spring框架无疑占据着重要的地位。其中,Spring MVC和Spring WebFlux作为Spring框架中用于构建Web应用程序的两个重要模块,各自具有独特…...

Linux探秘坊-------4.进度条小程序

1.缓冲区 #include <stdio.h> int main() {printf("hello bite!");sleep(2);return 0; }执行此代码后&#xff0c;会 先停顿两秒&#xff0c;再打印出hello bite&#xff0c;但是明明打印在sleep前面&#xff0c;为什么会后打印呢&#xff1f; 因为&#xff…...

Llama 3:开源大模型的里程碑式突破

标题&#xff1a;Llama 3&#xff1a;开源大模型的里程碑式突破 文章信息摘要&#xff1a; Meta通过Llama 3展现了开源LLM的重大突破&#xff1a;采用超大规模训练数据和多阶段训练方法&#xff08;SFT、rejection sampling、PPO和DPO&#xff09;&#xff0c;突破了传统的Chi…...

计算机网络 (56)交互式音频/视频

一、定义与特点 定义&#xff1a;交互式音频/视频是指用户使用互联网和其他人进行实时交互式通信的技术&#xff0c;包括语音、视频图像等多媒体实时通信。 特点&#xff1a; 实时性&#xff1a;音频和视频数据是实时传输和播放的&#xff0c;用户之间可以进行即时的交流。交互…...

STM32 GPIO工作模式

GPIO工作模式 1. GPIO简介2. GPIO工作模式2.1 输入浮空2.2 输入上拉2.3 输入下拉2.4 模拟2.5 开漏输出2.6 推挽输出2.7 开漏式复用功能2.8 推挽式复用功能 1. GPIO简介 GPIO 是通用输入输出端口的简称&#xff0c;简单来说就是 STM32 可控制的引脚&#xff0c;STM32 芯片的 GPI…...

自动化实现的思路变化

阶段一&#xff1a; 1、成功调用。第一步&#xff0c;一般是用现用的工具&#xff0c;或者脚本成功调用接口 2、解决关联接口的参数传递。有的接口直接&#xff0c;存在参数的传递&#xff0c;一般的思路&#xff0c;就是将这个参数设置为变量。 3、简化代码。总会有些东西是重…...

MongoDB的索引与聚合

一、实验目的 1. 理解索引的概念及其在MongoDB中的重要性和作用。 2. 学习如何选择适合建立索引的字段。 3. 掌握如何创建、删除索引以及如何强制使用索引。 4. 熟悉MongoDB的聚合框架和MapReduce工具&#xff0c;以及简单聚合命令的使用。 二、实验环境准备 1. JAV…...

Java菜鸟养成计划(java基础)--java运算符

java中的运算符 1、java中的运算符1.1 、 、-、 * 、/ 、 %1.2 、、-、 *、/、%1.3 、、--【自增\自减运算符】1.4、>、 <、 > 、< 、 、! 、! 1.5、&&、||、|、&1.6、&、|、~、^1.7、>> 、 <<、>>>位运算1.8、?:三目运算符…...

除了基本的事件绑定,鸿蒙的ArkUI

鸿蒙操作系统&#xff08;HarmonyOS&#xff09;是由华为技术有限公司开发的分布式操作系统&#xff0c;旨在为多种智能设备提供一个统一的操作平台。它不仅适用于智能手机&#xff0c;还适用于平板电脑、智能手表、智能电视等物联网设备。为了使开发者能够更加便捷地创建跨设备…...

0164__【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os

【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os_gcc -o0-CSDN博客...

vue3组件传值具体使用

问&#xff1a; left.vue文件调用接口获取了后端返回的urlLink字段&#xff0c;我该怎么传递给总的父组件index.vue中&#xff0c;我需要点击父组件的一个按钮来触发跳转&#xff1f; 回答&#xff1a; 在 Vue 3 中使用 TypeScript 和 setup 语法糖时&#xff0c;可以通过 e…...

Web 音视频(二)在浏览器中解析视频

前言 浏览器中已经能直接播放视频&#xff0c;为什么还需要手动写代码解析&#xff1f; 因为&#xff0c;某些场景需要对视频进行更细致的处理&#xff0c;比如截取关键帧、提取视频中的文字、人物打码、极低延时播放视频等等。 总之&#xff0c;除了最单纯的视频播放外&…...

江天科技主要产品销售单价下滑,应收账款、存货周转率大幅下降

《港湾商业观察》廖紫雯 日前&#xff0c;苏州江天包装科技股份有限公司&#xff08;以下简称&#xff1a;江天科技&#xff09;冲击北交所&#xff0c;保荐机构为国投证券。 江天科技主要从事标签印刷产品的研发、生产与销售&#xff0c;公司主要产品包括薄膜类和纸张类的不…...

我国的金融组织体系,还有各大金融机构的分类,金融行业的组织

中国金融组织体系介绍 中国金融组织体系是一个复杂而多层次的系统&#xff0c;涵盖了各种类型的金融机构和监管机构。以下是关于中国金融组织体系的详细介绍&#xff0c;包括一行三会等金融监管机构&#xff0c;各大金融机构的分类、涉及的银行以及行业组织。 &#xff08;一…...

vue md5加密

在Vue中使用MD5加密&#xff0c;你可以使用第三方库如crypto-js。首先&#xff0c;你需要安装这个库&#xff1a; npm install crypto-js --save然后&#xff0c;在你的Vue组件中引入crypto-js并使用其MD5功能&#xff1a; <template><div><input v-model&quo…...

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证7)

本文验证基于请求头中传递token信息的认证方式&#xff0c;webapi项目的控制器类中新建如下函数&#xff0c;仅通过验证的客户端能调用&#xff0c;需要客户端请求在Header中添加’Authorization’: Bearer token’的键值对且通过token验证后才能调用。 [Authorize] [HttpGet]…...

Ubuntu16.04 安装OpenCV4.5.4 避坑

Ubuntu16.04 安装C版OpenCV4.5.4 Ubuntu16.04 VSCode下cmakeclanglldb调试c 文章目录 Ubuntu16.04 安装C版OpenCV4.5.41. 下载Opencv压缩包2. 安装Opencv-4.5.43. 配置OpenCV的编译环境4.测试是否安装成功 1. 下载Opencv压缩包 下载Opencv压缩包&#xff0c;选择source版本。…...

DDD - 整洁架构_解决技术设计困局

文章目录 Pre如何落地 DDD底层技术的更迭 整洁架构的设计主动适配器/北向适配器被动适配器/南向适配器 整洁架构的落地总结 Pre DDD - 软件退化原因及案例分析 DDD - 如何运用 DDD 进行软件设计 DDD - 如何运用 DDD 进行数据库设计 DDD - 服务、实体与值对象的两种设计思路…...

Python自动化运维:一键掌控服务器的高效之道

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为…...

后进先出(LIFO)详解

LIFO 是 Last In, First Out 的缩写&#xff0c;中文译为后进先出。这是一种数据结构的工作原则&#xff0c;类似于一摞盘子或一叠书本&#xff1a; 最后放进去的元素最先出来 -想象往筒状容器里放盘子&#xff1a; &#xff08;1&#xff09;你放进的最后一个盘子&#xff08…...

大话软工笔记—需求分析概述

需求分析&#xff0c;就是要对需求调研收集到的资料信息逐个地进行拆分、研究&#xff0c;从大量的不确定“需求”中确定出哪些需求最终要转换为确定的“功能需求”。 需求分析的作用非常重要&#xff0c;后续设计的依据主要来自于需求分析的成果&#xff0c;包括: 项目的目的…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

基于SpringBoot在线拍卖系统的设计和实现

摘 要 随着社会的发展&#xff0c;社会的各行各业都在利用信息化时代的优势。计算机的优势和普及使得各种信息系统的开发成为必需。 在线拍卖系统&#xff0c;主要的模块包括管理员&#xff1b;首页、个人中心、用户管理、商品类型管理、拍卖商品管理、历史竞拍管理、竞拍订单…...

Linux 中如何提取压缩文件 ?

Linux 是一种流行的开源操作系统&#xff0c;它提供了许多工具来管理、压缩和解压缩文件。压缩文件有助于节省存储空间&#xff0c;使数据传输更快。本指南将向您展示如何在 Linux 中提取不同类型的压缩文件。 1. Unpacking ZIP Files ZIP 文件是非常常见的&#xff0c;要在 …...

[免费]微信小程序问卷调查系统(SpringBoot后端+Vue管理端)【论文+源码+SQL脚本】

大家好&#xff0c;我是java1234_小锋老师&#xff0c;看到一个不错的微信小程序问卷调查系统(SpringBoot后端Vue管理端)【论文源码SQL脚本】&#xff0c;分享下哈。 项目视频演示 【免费】微信小程序问卷调查系统(SpringBoot后端Vue管理端) Java毕业设计_哔哩哔哩_bilibili 项…...

免费数学几何作图web平台

光锐软件免费数学工具&#xff0c;maths,数学制图&#xff0c;数学作图&#xff0c;几何作图&#xff0c;几何&#xff0c;AR开发,AR教育,增强现实,软件公司,XR,MR,VR,虚拟仿真,虚拟现实,混合现实,教育科技产品,职业模拟培训,高保真VR场景,结构互动课件,元宇宙http://xaglare.c…...