当前位置: 首页 > news >正文

STM32 GPIO工作模式

GPIO工作模式

  • 1. GPIO简介
  • 2. GPIO工作模式
    • 2.1 输入浮空
    • 2.2 输入上拉
    • 2.3 输入下拉
    • 2.4 模拟
    • 2.5 开漏输出
    • 2.6 推挽输出
    • 2.7 开漏式复用功能
    • 2.8 推挽式复用功能

1. GPIO简介

  GPIO 是通用输入输出端口的简称,简单来说就是 STM32 可控制的引脚,STM32 芯片的 GPIO 引脚与外部设备连接起来,从而实现与外部通讯、控制以及数据采集的功能。STM32 芯片的 GPIO 被分成很多组,每组最多 16 个 IO 口,组数视芯片而定。比如:STM32F407ZGT6 芯片是 144 脚的芯片,分为 7 组,分别是:GPIOA、GPIOB、GPIOC、GPIOD、GPIOE、GPIOF 和 GPIOG,其中 112 个 IO 口是 GPIO 引脚,所有的 GPIO引脚都有基本的输入输出功能。
  最基本的输出功能:是由 STM32 控制引脚输出高、低电平,实现开关控制,如把 GPIO 引脚接入到 LED 灯,那就可以控制 LED 灯的亮灭,引脚接入到继电器或三极管,那就可以通过继电器或三极管控制外部大功率电路的通断。
  最基本的输入功能:是检测外部输入电平,如把 GPIO 引脚连接到按键,通过电平高低区分按键是否被按下。

2. GPIO工作模式

GPIO 工作模式模式描述应用场景
1.输入浮空用于读取外部信号的电平1.外部电路已经提供了上拉或下拉电阻
2.输入上拉上拉电阻将引脚拉至高电平,用于确保引脚在未连接外部
信号时保持稳定的电平。
1.按键检测:确保按键未按下时引脚为高电平
2.信号抗干扰:减少外部噪声对引脚电平的影响
3.输入下拉下拉电阻将引脚拉至低电平,用于确保引脚在未连接外部
信号时保持稳定的电平。
1.信号抗干扰:减少外部噪声对引脚电平的影响
4.模拟引脚的数字输入和输出功能被禁用,用于连接模拟信号。1.ADC 输入:连接模拟传感器(如温度传感器)
2.DAC 输出:输出模拟信号(如音频信号)
5.开漏输出只能输出低电平或高阻态,外部上拉电阻才能提供高电平。1.I2C 总线:SDA 和 SCL 通常配置为开漏输出
2.电平转换:用于不同电压电平之间的信号转换
3.多设备共享信号线:如中断信号线
6.推挽输出可以输出高低电平,驱动能力强,适合驱动大电流负载。1.LED 控制:直接驱动 LED
2.电机控制:驱动电机驱动器
3.数字信号输出:输出高电平或低电平信号
7.开漏式复用同<开漏输出>同<开漏输出>
8.推挽式复用同<推挽输出>同<推挽输出>


在这里插入图片描述
最右边的 I/O 引脚就是我们可以看到的芯片实物的引脚,其他部分都是 GPIO 的内部结构。
① 保护二极管
保护二极管共有两个,用于保护引脚外部过高或过低的电压输入。当引脚输入电压高于VDD 时,上面的二极管导通,当引脚输入电压低于 VSS 时,下面的二极管导通,从而使输入芯片内部的电压处于比较稳定的值。虽然有二极管的保护,但这样的保护却很有限,大电压大电流的接入很容易烧坏芯片。如 STM32 的引脚能直接外接大功率驱动器件(电机),强制驱动要么电机不转,要么导致芯片烧坏,必须要加大功率及隔离电路驱动。

② 上拉、下拉电阻
它们阻值大概在 30~50K 欧之间,可以通过上、下两个对应的开关控制,这两个开关由寄存器控制。当引脚外部的器件没有干扰引脚的电压时,即没有外部的上、下拉电压,引脚的电平由引脚内部上、下拉决定,开启内部上拉电阻工作,引脚电平为高,开启内部下拉电阻工作,则引脚电平为低。同样,如果内部上、下拉电阻都不开启,这种情况就是我们所说的浮空模式。浮空模式下,引脚的电平是不可确定的。引脚的电平可以由外部的上、下拉电平决定。需要注意的是,STM32 的内部上拉是一种“弱上拉”,这样的上拉电流很弱,如果有要求大电流还是得外部上拉。

③ 施密特触发器
对于标准施密特触发器,当输入电压高于正向阈值电压,输出为高;当输入电压低于负向阈值电压,输出为低;当输入在正负向阈值电压之间,输出不改变,也就是说输出由高电准位翻转为低电准位,或是由低电准位翻转为高电准位对应的阈值电压是不同的。只有当输入电压发生足够的变化时,输出才会变化,因此将这种元件命名为触发器。这种双阈值动作被称为迟滞现象,表明施密特触发器有记忆性。从本质上来说,施密特触发器是一种双稳态多谐振荡器。施密特触发器可作为波形整形电路,能将模拟信号波形整形为数字电路能够处理的方波波形,而且由于施密特触发器具有滞回特性,所以可用于抗干扰,其应用包括在开回路配置中用于抗扰,以及在闭回路正回授/负回授配置中用于实现多谐振荡器。
比较器的(A)和施密特触发器(B)作用比较可知: 施密特触发器对外部输入信号具有一定抗干扰能力。
在这里插入图片描述

④ P-MOS 管和 N-MOS 管
这个结构控制 GPIO 的开漏输出和推挽输出两种模式。
推挽输出: 输入高电平时,经过反向后,上方的 P-MOS 导通,下方的 N-MOS 关闭,对外输出高电平;而在该结构中输入低电平时,经过反向后,N-MOS 管导通,P-MOS 关闭,对外输出低电平。当引脚高低电平切换时,两个管子轮流导通,P 管负责灌电流,N 管负责拉电流,使其负载能力和开关速度都比普通的方式有很大的提高。(推挽输出的低电平为 0 伏,高电平为 3.3 伏)
开漏输出: 上方的 P-MOS 管完全不工作。如果我们控制输出为 0,低电平,则 P-MOS 管关闭,N-MOS 管导通,使输出接地,若控制输出为 1 (它无法直接输出高电平) 时,则 P-MOS 管和 N-MOS 管都关闭,所以引脚既不输出高电平,也不输出低电平,为高阻态。

输出数据寄存器
前面提到的双 MOS 管结构电路的输入信号,是由 GPIO输出数据寄存器 GPIOx_ODR提供的,因此我们通过修改输出数据寄存器的值就可以修改 GPIO 引脚的输出电平。而置位/复位寄存器 GPIOx_BSRR可以通过修改输出数据寄存器的值从而影响电路的输出。

复用功能输出
复用功能输出中的复用是指 STM32 的其它片上外设对 GPIO 引脚进行控制,此时 GPIO 引脚用作该外设功能的一部分,算是第二用途。从其它外设引出来的 复用功能输出信号 与 GPIO 本身的数据据寄存器都连接到双 MOS 管结构的输入中,通过图中的梯形结构作为开关切换选择。例如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯发送引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,由串口外设控制该引脚,发送数据。

输入数据寄存器
看 GPIO 结构框图的上半部分,GPIO 引脚经过内部的上、下拉电阻,可以配置成上/下拉输入,然后再连接到施密特触发器,信号经过触发器后,模拟信号转化为 0、1 的数字信号,然后存储在输入数据寄存器 GPIOx_IDR中,通过读取该寄存器就可以了解 GPIO 引脚的电平状态。

复用功能输入
复用功能输出模式类似,在 复用功能输入模式 时,GPIO 引脚的信号传输到 STM32 其它片上外设,由该外设读取引脚状态。同样,如我们使用 USART 串口通讯时,需要用到某个 GPIO 引脚作为通讯接收引脚,这个时候就可以把该 GPIO 引脚配置成 USART 串口复用功能,使 USART 可以通过该通讯引脚的接收远端数据。

模拟输入输出
当 GPIO 引脚用于 ADC 采集电压的输入通道时,用作 模拟输入 功能,此时信号是不经过施密特触发器的,因为经过施密特触发器后信号只有 0、1 两种状态,所以 ADC 外设要采集到原始的模拟信号,信号源输入必须在施密特触发器之前。类似地,当 GPIO 引脚用于 DAC 作为模拟电压输出通道时,此时作为 模拟输出 功能,DAC 的模拟信号输出就不经过双 MOS 管结构,模拟信号直接输出到引脚。

2.1 输入浮空

在这里插入图片描述

上拉/下拉电阻为断开状态,施密特触发器打开,输出被禁止。
输入浮空模式下,IO 口的电平完全是由外部电路决定。如果 IO 引脚没有连接其他的设备,那么检测其输入电平是不确定的。
可通过输入数据寄存器 GPIOx_IDR 读取 I/O 状态( 引脚电平由外部电路决定)。 该模式可以用于按键检测等场景

2.2 输入上拉

在这里插入图片描述

上拉电阻导通,施密特触发器打开,输出被禁止。
在需要外部上拉电阻的时候,可以使用内部上拉电阻,这样可以节省一个外部电阻,但是内部上拉电阻的阻值较大,所以只是“弱上拉”,不适合做电流型驱动。VDD正电源电压(如 3.3V 或 5V)
可通过输入数据寄存器 GPIOx_IDR 读取 I/O 状态( 引脚电平为高)。

2.3 输入下拉

在这里插入图片描述

下拉电阻导通,施密特触发器打开,输出被禁止。
在需要外部下拉电阻的时候,可以使用内部下拉电阻,这样可以节省一个外部电阻,但是内部下拉电阻的阻值较大,所以不适合做电流型驱动。VSS参考地(如 0V)
可通过输入数据寄存器 GPIOx_IDR 读取 I/O 状态( 引脚电平为低)。

2.4 模拟

在这里插入图片描述

上下拉电阻断开,施密特触发器关闭,双 MOS 管也关闭。
该模式用于 ADC 采集或者 DAC 输出,或者低功耗下省电。

2.5 开漏输出

在这里插入图片描述


P-MOS截止,N-MOS工作,施密特触发器打开。

  1. P-MOS 被 输出控制 控制在截止状态,因此 IO 的状态取决于 N-MOS 的导通状况。
  2. 只有N-MOS还受控制于输出数据寄存器 GPIOx_ODR 输出控制 对输入信号进行了逻辑非的操作。
  3. IO 到输入电路的采样电路仍被打开,且可以选择是否使用上下拉电阻。


输出数据寄存器 GPIOx_ODR 控制 I/O输出低电平:

  • 开漏模式下,P-MOS 管是一直截止的,所以 P-MOS 管的栅极一直接 VSS。如果输出数据寄存器 GPIOx_ODR设置为 0 时,经过 输出控制 的逻辑非操作后,输出逻辑 1 到 N-MOS 管的栅极,这时 N-MOS 管就会导通,使得 I/O 引脚接到 VSS,即输出低电平。

输出数据寄存器 GPIOx_ODR 控制 I/O 不输出高低电平 / 输出高电平(通过上拉电阻实现):

  • 开漏模式下,P-MOS 管是一直截止的,所以 P-MOS 管的栅极一直接 VSS。如果输出数据寄存器 GPIOx_ODR设置为 1 时,经过 输出控制 的逻辑非操作后,输出逻辑 0 到 N-MOS 管的栅极,这时 N-MOS 管就会截止。因为 P-MOS 管是一直截止的,使得 I/O 引脚呈现高阻态,即不输出低电平,也不输出高电平。因此要 I/O 引脚输出高电平就必须接上拉电阻。这时可以接内部上拉电阻,或者接一个外部上拉电阻。由于内部上拉电阻的阻值较大,所以只是“弱上拉”。需要大电流驱动,请接外部的上拉电阻。此外,上拉电阻具有线与特性,即如果有很多开漏模式的引脚连在一起的时候,只有当所有引脚都输出高阻态,电平才为 1,只要有其中一个为低电平时,就等于接地,使得整条线路都为低电平 0。我们的 IIC 通信(IIC_SDA)就用到这个原理。

施密特触发器打开,可以读取 IO 口数据:

  • 在开漏输出模式下,施密特触发器是打开的,所以 IO 口引脚的电平状态会被采集到输入数据寄存器 GPIOx_IDR 中,如果对输入数据寄存器进行读访问可以得到 IO 口的状态。也就是说开漏输出模式下,我们可以对 IO 口进行读数据。

2.6 推挽输出

在这里插入图片描述


P-MOS工作,N-MOS工作,施密特触发器打开。

输出数据寄存器 GPIOx_ODR 控制 I/O输出低电平:

  • 如果输出数据寄存器 GPIOx_ODR设置为 0 时,经过 输出控制 的逻辑非操作后,输出逻辑 1 到 P-MOS 管的栅极,这时 P-MOS 管就会截止,同时也会输出逻辑 1 到 N-MOS 管的栅极,这时 N-MOS 管就会导通,使得 I/O 引脚接到 VSS,即输出低电平。

输出数据寄存器 GPIOx_ODR 控制 I/O输出高电平:

  • 如果输出数据寄存器 GPIOx_ODR设置为 1 时,经过 输出控制 的逻辑非操作后,输出逻辑 0 到 N-MOS 管的栅极,这时 N-MOS 管就会截止,同时也会输出逻辑 0 到 P-MOS 管的栅极,这时 P-MOS 管就会导通,使得 I/O 引脚接到 VDD,即输出高电平。

施密特触发器打开,可以读取 IO 口数据:

  • 在推挽输出模式下,施密特触发器是打开的,所以 IO 口引脚的电平状态会被采集到输入数据寄存器 GPIOx_IDR 中,如果对输入数据寄存器进行读访问可以得到 IO 口的状态。也就是说推挽输出模式下,我们可以对 IO 口进行读数据。


注意:
推挽输出模式下,P-MOS 管和 N-MOS 管同一时间只能有一个 MOS 管是导通的。当引脚高低电平切换时,两个管子轮流导通,一个负责灌电流,一个负责拉电流,使其负载能力和开关速度都有很大的提高。由于推挽输出模式输出高电平时,是直接连接 VDD ,所以驱动能力较强,可以做电流型驱动,驱动电流最大可达 25mA。该模式也是最常用的输出模式。

2.7 开漏式复用功能

在这里插入图片描述


P-MOS截止,N-MOS工作,施密特触发器打开。

  1. P-MOS 被 输出控制 控制在截止状态,因此 IO 的状态取决于 N-MOS 的导通状况。
  2. 只有N-MOS还受控制于输出数据寄存器 GPIOx_ODR 输出控制 对输入信号进行了逻辑非的操作。
  3. IO 到输入电路的采样电路仍被打开,且可以选择是否使用上下拉电阻。


输出数据寄存器 GPIOx_ODR 控制 I/O输出低电平:

  • 开漏模式下,P-MOS 管是一直截止的,所以 P-MOS 管的栅极一直接 VSS。如果输出数据寄存器 GPIOx_ODR设置为 0 时,经过 输出控制 的逻辑非操作后,输出逻辑 1 到 N-MOS 管的栅极,这时 N-MOS 管就会导通,使得 I/O 引脚接到 VSS,即输出低电平。

输出数据寄存器 GPIOx_ODR 控制 I/O 不输出高低电平 / 输出高电平(通过上拉电阻实现):

  • 开漏模式下,P-MOS 管是一直截止的,所以 P-MOS 管的栅极一直接 VSS。如果输出数据寄存器 GPIOx_ODR设置为 1 时,经过 输出控制 的逻辑非操作后,输出逻辑 0 到 N-MOS 管的栅极,这时 N-MOS 管就会截止。因为 P-MOS 管是一直截止的,使得 I/O 引脚呈现高阻态,即不输出低电平,也不输出高电平。因此要 I/O 引脚输出高电平就必须接上拉电阻。这时可以接内部上拉电阻,或者接一个外部上拉电阻。由于内部上拉电阻的阻值较大,所以只是“弱上拉”。需要大电流驱动,请接外部的上拉电阻。此外,上拉电阻具有线与特性,即如果有很多开漏模式的引脚连在一起的时候,只有当所有引脚都输出高阻态,电平才为 1,只要有其中一个为低电平时,就等于接地,使得整条线路都为低电平 0。我们的 IIC 通信(IIC_SDA)就用到这个原理。

施密特触发器打开,可以读取 IO 口数据:

  • 在开漏输出模式下,施密特触发器是打开的,所以 IO 口引脚的电平状态会被采集到输入数据寄存器 GPIOx_IDR 中,如果对输入数据寄存器进行读访问可以得到 IO 口的状态。也就是说开漏输出模式下,我们可以对 IO 口进行读数据。


注意:
一个 IO 口可以是通用的 IO 口功能,还可以是其他外设的特殊功能引脚,这就是 IO 口的复用功能。一个 IO 口可以是多个外设的功能引脚,我们需要选择作为其中一个外设的功能引脚。当选择复用功能时,引脚的状态是由对应的外设控制,而不是输出数据寄存器。

2.8 推挽式复用功能

在这里插入图片描述


P-MOS工作,N-MOS工作,施密特触发器打开。

输出数据寄存器 GPIOx_ODR 控制 I/O输出低电平:

  • 如果输出数据寄存器 GPIOx_ODR设置为 0 时,经过 输出控制 的逻辑非操作后,输出逻辑 1 到 P-MOS 管的栅极,这时 P-MOS 管就会截止,同时也会输出逻辑 1 到 N-MOS 管的栅极,这时 N-MOS 管就会导通,使得 I/O 引脚接到 VSS,即输出低电平。

输出数据寄存器 GPIOx_ODR 控制 I/O输出高电平:

  • 如果输出数据寄存器 GPIOx_ODR设置为 1 时,经过 输出控制 的逻辑非操作后,输出逻辑 0 到 N-MOS 管的栅极,这时 N-MOS 管就会截止,同时也会输出逻辑 0 到 P-MOS 管的栅极,这时 P-MOS 管就会导通,使得 I/O 引脚接到 VDD,即输出高电平。

施密特触发器打开,可以读取 IO 口数据:

  • 在推挽输出模式下,施密特触发器是打开的,所以 IO 口引脚的电平状态会被采集到输入数据寄存器 GPIOx_IDR 中,如果对输入数据寄存器进行读访问可以得到 IO 口的状态。也就是说推挽输出模式下,我们可以对 IO 口进行读数据。


注意:

  1. 推挽输出模式下,P-MOS 管和 N-MOS 管同一时间只能有一个 MOS 管是导通的。当引脚高低电平切换时,两个管子轮流导通,一个负责灌电流,一个负责拉电流,使其负载能力和开关速度都有很大的提高。由于推挽输出模式输出高电平时,是直接连接 VDD ,所以驱动能力较强,可以做电流型驱动,驱动电流最大可达 25mA。该模式也是最常用的输出模式。
  2. 一个 IO 口可以是通用的 IO 口功能,还可以是其他外设的特殊功能引脚,这就是 IO 口的复用功能。一个 IO 口可以是多个外设的功能引脚,我们需要选择作为其中一个外设的功能引脚。当选择复用功能时,引脚的状态是由对应的外设控制,而不是输出数据寄存器。

相关文章:

STM32 GPIO工作模式

GPIO工作模式 1. GPIO简介2. GPIO工作模式2.1 输入浮空2.2 输入上拉2.3 输入下拉2.4 模拟2.5 开漏输出2.6 推挽输出2.7 开漏式复用功能2.8 推挽式复用功能 1. GPIO简介 GPIO 是通用输入输出端口的简称&#xff0c;简单来说就是 STM32 可控制的引脚&#xff0c;STM32 芯片的 GPI…...

自动化实现的思路变化

阶段一&#xff1a; 1、成功调用。第一步&#xff0c;一般是用现用的工具&#xff0c;或者脚本成功调用接口 2、解决关联接口的参数传递。有的接口直接&#xff0c;存在参数的传递&#xff0c;一般的思路&#xff0c;就是将这个参数设置为变量。 3、简化代码。总会有些东西是重…...

MongoDB的索引与聚合

一、实验目的 1. 理解索引的概念及其在MongoDB中的重要性和作用。 2. 学习如何选择适合建立索引的字段。 3. 掌握如何创建、删除索引以及如何强制使用索引。 4. 熟悉MongoDB的聚合框架和MapReduce工具&#xff0c;以及简单聚合命令的使用。 二、实验环境准备 1. JAV…...

Java菜鸟养成计划(java基础)--java运算符

java中的运算符 1、java中的运算符1.1 、 、-、 * 、/ 、 %1.2 、、-、 *、/、%1.3 、、--【自增\自减运算符】1.4、>、 <、 > 、< 、 、! 、! 1.5、&&、||、|、&1.6、&、|、~、^1.7、>> 、 <<、>>>位运算1.8、?:三目运算符…...

除了基本的事件绑定,鸿蒙的ArkUI

鸿蒙操作系统&#xff08;HarmonyOS&#xff09;是由华为技术有限公司开发的分布式操作系统&#xff0c;旨在为多种智能设备提供一个统一的操作平台。它不仅适用于智能手机&#xff0c;还适用于平板电脑、智能手表、智能电视等物联网设备。为了使开发者能够更加便捷地创建跨设备…...

0164__【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os

【GNU】gcc -O编译选项 -Og -O0 -O1 -O2 -O3 -Os_gcc -o0-CSDN博客...

vue3组件传值具体使用

问&#xff1a; left.vue文件调用接口获取了后端返回的urlLink字段&#xff0c;我该怎么传递给总的父组件index.vue中&#xff0c;我需要点击父组件的一个按钮来触发跳转&#xff1f; 回答&#xff1a; 在 Vue 3 中使用 TypeScript 和 setup 语法糖时&#xff0c;可以通过 e…...

Web 音视频(二)在浏览器中解析视频

前言 浏览器中已经能直接播放视频&#xff0c;为什么还需要手动写代码解析&#xff1f; 因为&#xff0c;某些场景需要对视频进行更细致的处理&#xff0c;比如截取关键帧、提取视频中的文字、人物打码、极低延时播放视频等等。 总之&#xff0c;除了最单纯的视频播放外&…...

江天科技主要产品销售单价下滑,应收账款、存货周转率大幅下降

《港湾商业观察》廖紫雯 日前&#xff0c;苏州江天包装科技股份有限公司&#xff08;以下简称&#xff1a;江天科技&#xff09;冲击北交所&#xff0c;保荐机构为国投证券。 江天科技主要从事标签印刷产品的研发、生产与销售&#xff0c;公司主要产品包括薄膜类和纸张类的不…...

我国的金融组织体系,还有各大金融机构的分类,金融行业的组织

中国金融组织体系介绍 中国金融组织体系是一个复杂而多层次的系统&#xff0c;涵盖了各种类型的金融机构和监管机构。以下是关于中国金融组织体系的详细介绍&#xff0c;包括一行三会等金融监管机构&#xff0c;各大金融机构的分类、涉及的银行以及行业组织。 &#xff08;一…...

vue md5加密

在Vue中使用MD5加密&#xff0c;你可以使用第三方库如crypto-js。首先&#xff0c;你需要安装这个库&#xff1a; npm install crypto-js --save然后&#xff0c;在你的Vue组件中引入crypto-js并使用其MD5功能&#xff1a; <template><div><input v-model&quo…...

学习ASP.NET Core的身份认证(基于JwtBearer的身份认证7)

本文验证基于请求头中传递token信息的认证方式&#xff0c;webapi项目的控制器类中新建如下函数&#xff0c;仅通过验证的客户端能调用&#xff0c;需要客户端请求在Header中添加’Authorization’: Bearer token’的键值对且通过token验证后才能调用。 [Authorize] [HttpGet]…...

Ubuntu16.04 安装OpenCV4.5.4 避坑

Ubuntu16.04 安装C版OpenCV4.5.4 Ubuntu16.04 VSCode下cmakeclanglldb调试c 文章目录 Ubuntu16.04 安装C版OpenCV4.5.41. 下载Opencv压缩包2. 安装Opencv-4.5.43. 配置OpenCV的编译环境4.测试是否安装成功 1. 下载Opencv压缩包 下载Opencv压缩包&#xff0c;选择source版本。…...

DDD - 整洁架构_解决技术设计困局

文章目录 Pre如何落地 DDD底层技术的更迭 整洁架构的设计主动适配器/北向适配器被动适配器/南向适配器 整洁架构的落地总结 Pre DDD - 软件退化原因及案例分析 DDD - 如何运用 DDD 进行软件设计 DDD - 如何运用 DDD 进行数据库设计 DDD - 服务、实体与值对象的两种设计思路…...

Python自动化运维:一键掌控服务器的高效之道

《Python OpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门! 解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界 在互联网和云计算高速发展的今天,服务器数量的指数增长使得手动运维和管理变得异常繁琐。Python凭借其强大的可读性和丰富的生态系统,成为…...

数论问题61一一各种进位制

10进位制是普遍使用的数进位制&#xff0c;二进位制是计算机采用的进位制。还有三进位制&#xff0c;四进位制&#xff0c;…等等。那一种进位制都能转化为10进位制。下面介绍这种方法。 ①10进位制的表示(口诀:逢10进1) 如8X10007X1005x1038753。 ②2进位制的表示(口诀:逢2…...

Java开发提速秘籍:巧用Apache Commons Lang工具库

一、Java 开发效率之困 在当今数字化时代&#xff0c;Java 作为一门广泛应用的编程语言&#xff0c;在各类软件开发项目中占据着举足轻重的地位。无论是大型企业级应用、互联网平台&#xff0c;还是移动应用后端&#xff0c;都能看到 Java 的身影。然而&#xff0c;Java 开发者…...

使用sql查询excel内容

1. 简介 我们在前面的文章中提到了calcite支持csv和json文件的数据源适配, 其实就是将文件解析成表然后以文件夹为schema, 然后将生成的schema注册到RootSehema(RootSchema是所有数据源schema的parent&#xff0c;多个不同数据源schema可以挂在同一个RootSchema下)下, 最终使用…...

[Python学习日记-78] 基于 TCP 的 socket 开发项目 —— 模拟 SSH 远程执行命令

[Python学习日记-78] 基于 TCP 的 socket 开发项目 —— 模拟 SSH 远程执行命令 简介 项目分析 如何执行系统命令并拿到结果 代码实现 简介 在Python学习日记-77中我们介绍了 socket 基于 TCP 和基于 UDP 的套接字&#xff0c;还实现了服务器端和客户端的通信&#xff0c;本…...

电子应用设计方案101:智能家庭AI喝水杯系统设计

智能家庭 AI 喝水杯系统设计 一、引言 智能家庭 AI 喝水杯系统旨在为用户提供个性化的饮水提醒和健康管理服务&#xff0c;帮助用户养成良好的饮水习惯。 二、系统概述 1. 系统目标 - 精确监测饮水量和饮水频率。 - 根据用户的身体状况和活动量&#xff0c;智能制定饮水计划。…...

【Axure高保真原型】引导弹窗

今天和大家中分享引导弹窗的原型模板&#xff0c;载入页面后&#xff0c;会显示引导弹窗&#xff0c;适用于引导用户使用页面&#xff0c;点击完成后&#xff0c;会显示下一个引导弹窗&#xff0c;直至最后一个引导弹窗完成后进入首页。具体效果可以点击下方视频观看或打开下方…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

【OSG学习笔记】Day 18: 碰撞检测与物理交互

物理引擎&#xff08;Physics Engine&#xff09; 物理引擎 是一种通过计算机模拟物理规律&#xff08;如力学、碰撞、重力、流体动力学等&#xff09;的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互&#xff0c;广泛应用于 游戏开发、动画制作、虚…...

3.3.1_1 检错编码(奇偶校验码)

从这节课开始&#xff0c;我们会探讨数据链路层的差错控制功能&#xff0c;差错控制功能的主要目标是要发现并且解决一个帧内部的位错误&#xff0c;我们需要使用特殊的编码技术去发现帧内部的位错误&#xff0c;当我们发现位错误之后&#xff0c;通常来说有两种解决方案。第一…...

第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明

AI 领域的快速发展正在催生一个新时代&#xff0c;智能代理&#xff08;agents&#xff09;不再是孤立的个体&#xff0c;而是能够像一个数字团队一样协作。然而&#xff0c;当前 AI 生态系统的碎片化阻碍了这一愿景的实现&#xff0c;导致了“AI 巴别塔问题”——不同代理之间…...

聊一聊接口测试的意义有哪些?

目录 一、隔离性 & 早期测试 二、保障系统集成质量 三、验证业务逻辑的核心层 四、提升测试效率与覆盖度 五、系统稳定性的守护者 六、驱动团队协作与契约管理 七、性能与扩展性的前置评估 八、持续交付的核心支撑 接口测试的意义可以从四个维度展开&#xff0c;首…...

大语言模型(LLM)中的KV缓存压缩与动态稀疏注意力机制设计

随着大语言模型&#xff08;LLM&#xff09;参数规模的增长&#xff0c;推理阶段的内存占用和计算复杂度成为核心挑战。传统注意力机制的计算复杂度随序列长度呈二次方增长&#xff0c;而KV缓存的内存消耗可能高达数十GB&#xff08;例如Llama2-7B处理100K token时需50GB内存&a…...

论文笔记——相干体技术在裂缝预测中的应用研究

目录 相关地震知识补充地震数据的认识地震几何属性 相干体算法定义基本原理第一代相干体技术&#xff1a;基于互相关的相干体技术&#xff08;Correlation&#xff09;第二代相干体技术&#xff1a;基于相似的相干体技术&#xff08;Semblance&#xff09;基于多道相似的相干体…...

【网络安全】开源系统getshell漏洞挖掘

审计过程&#xff1a; 在入口文件admin/index.php中&#xff1a; 用户可以通过m,c,a等参数控制加载的文件和方法&#xff0c;在app/system/entrance.php中存在重点代码&#xff1a; 当M_TYPE system并且M_MODULE include时&#xff0c;会设置常量PATH_OWN_FILE为PATH_APP.M_T…...

【Android】Android 开发 ADB 常用指令

查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...