当前位置: 首页 > news >正文

ultralytics 是什么?

ultralytics 是一个用于计算机视觉任务的 Python 库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现 YOLO(You Only Look Once) 系列模型,特别是最新的 YOLOv8


1. YOLO 是什么?

YOLO 是一种流行的目标检测算法,以其速度快精度高而闻名。YOLO 的核心思想是将目标检测问题转化为一个回归问题,直接预测目标的边界框和类别。

  • YOLOv8 是 YOLO 系列的最新版本,由 Ultralytics 团队开发和维护。
  • YOLOv8 支持多种任务,包括目标检测、实例分割和图像分类。

2. ultralytics 的功能

ultralytics 提供了以下主要功能:

(1)目标检测(Object Detection)
  • 检测图像或视频中的物体,并返回每个物体的类别和边界框。

  • 示例代码:

    from ultralytics import YOLO# 加载预训练模型
    model = YOLO("yolov8n.pt")# 对图像进行推理
    results = model("https://ultralytics.com/images/bus.jpg")# 显示结果
    results[0].show()
    
(2)实例分割(Instance Segmentation)
  • 检测图像中的物体,并返回每个物体的类别、边界框和像素级掩码。

  • 示例代码:

    from ultralytics import YOLO# 加载预训练模型
    model = YOLO("yolov8n-seg.pt")  # 使用 YOLOv8 实例分割模型# 对图像进行推理
    results = model("https://ultralytics.com/images/bus.jpg")# 显示结果
    results[0].show()
    
(3)图像分类(Image Classification)
  • 对图像进行分类,返回图像的类别标签。

  • 示例代码:

    from ultralytics import YOLO# 加载预训练模型
    model = YOLO("yolov8n-cls.pt")  # 使用 YOLOv8 分类模型# 对图像进行推理
    results = model("https://ultralytics.com/images/bus.jpg")# 显示结果
    results[0].show()
    
(4)模型训练
  • 支持自定义数据集的训练,可以训练目标检测、实例分割和分类模型。

  • 示例代码:

    from ultralytics import YOLO# 加载模型
    model = YOLO("yolov8n.pt")# 训练模型
    results = model.train(data="coco128.yaml", epochs=10, imgsz=640)
    
(5)模型导出
  • 支持将模型导出为多种格式,如 ONNX、TensorRT、CoreML 等,以便在不同平台上部署。

  • 示例代码:

    from ultralytics import YOLO# 加载模型
    model = YOLO("yolov8n.pt")# 导出模型为 ONNX 格式
    model.export(format="onnx")
    

3. ultralytics 的优势

  • 简单易用:提供了简洁的 API,几行代码即可完成复杂的任务。
  • 高性能:基于 YOLOv8,速度快且精度高。
  • 多任务支持:支持目标检测、实例分割和图像分类。
  • 跨平台:支持多种硬件(CPU、GPU)和部署格式(ONNX、TensorRT 等)。

4. 适用场景

ultralytics 适用于以下场景:

  • 目标检测:检测图像或视频中的物体(如行人、车辆、动物等)。
  • 实例分割:对图像中的物体进行像素级分割。
  • 图像分类:对图像进行分类(如猫 vs 狗)。
  • 自定义训练:使用自己的数据集训练模型。
  • 模型部署:将模型导出为 ONNX、TensorRT 等格式,用于生产环境。

5. 安装 ultralytics

要使用 ultralytics,首先需要安装它:

pip install ultralytics

6. 官方资源

  • GitHub 仓库:Ultralytics YOLOv8
  • 官方文档:Ultralytics YOLOv8 Docs
  • 预训练模型:YOLOv8 Models

总结

ultralytics 是一个功能强大且易于使用的计算机视觉库,专注于 YOLO 系列模型的实现和应用。无论是目标检测、实例分割还是图像分类,ultralytics 都能提供高效的解决方案。

相关文章:

ultralytics 是什么?

ultralytics 是一个用于计算机视觉任务的 Python 库,专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现 YOLO(You Only Look Once) 系列模型,特别是最新的 YOLOv8。 1. YOLO 是什么? YO…...

AI竞争:从技术壁垒到用户数据之争

标题:AI竞争:从技术壁垒到用户数据之争 文章信息摘要: AI市场呈现开放模型与封闭模型并存的双轨发展态势,但核心竞争力已从模型技术转向用户数据积累和使用习惯培养。商业模式正在多元化发展,从早期的价格战转向subsc…...

MySQL 主从复制(单组传统复制,GTID复制。双主复制)

案例环境 单组复制 master: 192.168.180.143 slave01:192.168.180.144 双组复制 master01:192.168.180.143 master02:192.168.180.144 案例过程 准备工作 关闭所有防火墙 setenforce 0 && systemctl stop firewa…...

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖

【1】引言 前序学习了使用numpy创建单通道的灰色图像,并对灰色图像的局部进行了颜色更改,相关链接为: python学opencv|读取图像(九)用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客 之后又学习了使用numpy创…...

vue3 中如何监听 props 中的值的变化

在 Vue 3 中,你可以使用 watch 函数来监听组件的 props 值的变化。watch 函数允许你观察一个或多个响应式数据源,并在这些数据源发生变化时执行回调函数。 以下是一个示例,展示了如何在 Vue 3 中使用 watch 来监听 props 中的值的变化&#…...

Scrapy之一个item包含多级页面的处理方案

目标 在实际开发过程中,我们所需要的数据往往需要通过多个页面的数据汇总得到,通过列表获取到的数据只有简单的介绍。站在Scrapy框架的角度来看,实际上就是考虑如何处理一个item包含多级页面数据的问题。本文将以获取叶子猪网站的手游排行榜及…...

hive 自动检测、自动重启、记录检测日志、自动清理日志

最终效果 定时检测hive运行状态,进程不存在或者进程存在但是不监听端口的hiveserver2,自动重新拉起每次检测脚本执行的日志都会保存在log目录下.check文件,每一个月一个文件每月15日,删除2月前的检测日志开启hive自带日志输出后&…...

HFSS同轴替换波端口

波端口仿真正常 将波端口换成内径内径0.3mm外径0.6mm同轴之后 结果很不对 换成下面的尺寸就好了...

【2024年华为OD机试】 (C卷,100分)- 素数之积(JavaScriptJava PythonC/C++)

一、问题描述 RSA 因数分解问题 题目描述 RSA 加密算法在网络安全世界中无处不在,它利用了极大整数因数分解的困难度。数据越大,安全系数越高。给定一个 32 位正整数,请对其进行因数分解,找出是哪两个素数的乘积。 输入描述 …...

【C++模板】:如何判断自定义类型是否实现某个函数

一、引子 偶尔我们会面对这样的尴尬的场景,我们需要显示的去判断在某个自定义类型中,是否已经提供了我们期待的API接口,以避免产生“莫须有”的错误。阁下该如何破解此问题! 这里,直接给出一种通用的方法,…...

基于微信小程序的汽车保养系统设计与实现(LW+源码+讲解)

专注于大学生项目实战开发,讲解,毕业答疑辅导,欢迎高校老师/同行前辈交流合作✌。 技术范围:SpringBoot、Vue、SSM、HLMT、小程序、Jsp、PHP、Nodejs、Python、爬虫、数据可视化、安卓app、大数据、物联网、机器学习等设计与开发。 主要内容:…...

电子应用设计方案102:智能家庭AI鱼缸系统设计

智能家庭 AI 鱼缸系统设计 一、引言 智能家庭 AI 鱼缸系统旨在为鱼类提供一个健康、舒适的生活环境,同时为用户提供便捷的管理和观赏体验。 二、系统概述 1. 系统目标 - 自动维持水质稳定,包括水温、酸碱度、硬度和溶氧量等关键指标。 - 智能投食&…...

【Elasticsearch】RestClient操作文档

RestClient操作文档 新增文档实体类API语法 查询文档删除文档修改文档批量导入文档小结 新增文档 将数据库中的信息导入elasticsearch中 以商品数据为例 实体类 定义一个索引库结构对应的实体。 Data ApiModel(description "索引库实体") public class ItemDoc{…...

内存条的构造、原理及性能参数

内存条的构造、原理及性能参数 一、内存条的构造1.1 外观结构1.1.1 芯片:大脑1.1.2 PCB板:骨架1.1.3 金手指:接口1.1.4 电容电阻:稳压、稳流1.1.5 防呆缺口:防错 1.2 内部层次结构 二、内存条的工作原理2.1 数据的“搬…...

鸿蒙模块概念和应用启动相关类(HAP、HAR、HSP、AbilityStage、UIAbility、WindowStage、window)

目录 鸿蒙模块概念 HAP entry feature har shared 使用场景 HAP、HAR、HSP介绍 HAP、HAR、HSP开发 应用的启动 AbilityStage UIAbility WindowStage Window 拉起应用到显示到前台流程 鸿蒙模块概念 HAP hap包是手机安装的最小单元,1个app包含一个或…...

SQLark 百灵连接工具便捷功能之生成数据库测试数据

参考此文: SQLark百灵连接工具--数据生成...

ChirpIoT技术的优势以及局限性

ChirpIoT是一种由上海磐启微电子开发的国产无线射频通讯技术,ChirpIoT技术基于磐启多年对雷达等线性扩频信号的深入研究,并在此基础上对线性扩频信号的变化进行了改进,实现了远距离传输的一种无线通信技术。相关产品型号有E29-400T22D、E290-…...

Jetpack架构组件学习——使用Glance实现桌面小组件

基本使用 1.添加依赖 添加Glance依赖: // For AppWidgets supportimplementation "androidx.glance:glance-appwidget:1.1.0"// For interop APIs with Material 3implementation "androidx.glance:glance-material3:1.1.0"// For interop APIs with Mater…...

C++函数——fill

在C中,std::fill 是标准库提供的一个算法适用于几乎所有类型的容器,只要这些容器支持迭代器操作。具体来说,std::fill 的适用性取决于容器是否提供了满足其要求的迭代器类型,用于将指定范围内的所有元素设置为某个特定值。它是一个…...

二叉树(了解)c++

二叉树是一种特殊的树型结构,它的特点是: 每个结点至多只有2棵子树(即二叉树中不存在度大于2的结点) 并且二叉树的子树有左右之分,其次序不能任意颠倒,因此是一颗有序树 以A结点为例,左边的B是它的左孩子,右边的C是…...

uniapp 对接腾讯云IM群组成员管理(增删改查)

UniApp 实战:腾讯云IM群组成员管理(增删改查) 一、前言 在社交类App开发中,群组成员管理是核心功能之一。本文将基于UniApp框架,结合腾讯云IM SDK,详细讲解如何实现群组成员的增删改查全流程。 权限校验…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台,以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中,Producer(生产者) 是连接客户端应用与消息队列的第一步。生产者…...

django filter 统计数量 按属性去重

在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

Golang dig框架与GraphQL的完美结合

将 Go 的 Dig 依赖注入框架与 GraphQL 结合使用,可以显著提升应用程序的可维护性、可测试性以及灵活性。 Dig 是一个强大的依赖注入容器,能够帮助开发者更好地管理复杂的依赖关系,而 GraphQL 则是一种用于 API 的查询语言,能够提…...

《用户共鸣指数(E)驱动品牌大模型种草:如何抢占大模型搜索结果情感高地》

在注意力分散、内容高度同质化的时代,情感连接已成为品牌破圈的关键通道。我们在服务大量品牌客户的过程中发现,消费者对内容的“有感”程度,正日益成为影响品牌传播效率与转化率的核心变量。在生成式AI驱动的内容生成与推荐环境中&#xff0…...

爬虫基础学习day2

# 爬虫设计领域 工商:企查查、天眼查短视频:抖音、快手、西瓜 ---> 飞瓜电商:京东、淘宝、聚美优品、亚马逊 ---> 分析店铺经营决策标题、排名航空:抓取所有航空公司价格 ---> 去哪儿自媒体:采集自媒体数据进…...

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析

Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...