当前位置: 首页 > news >正文

Databend x 沉浸式翻译 | 基于 Databend Cloud 构建高效低成本的业务数据分析体系

「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具,用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示,还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自定义设置,在网络上好评如潮。

随着用户量持续增长,其运营和产品团队希望在尊重用户隐私的前提下,通过业务数据为业务增长研究提供决策依据。

业务挑战

业务数据埋点指标是数据仓库中不可或缺的重要数据源之一,同时也是企业最宝贵的资产之一。通常情况下,业务数据分析包含两大数据源:业务数据分析日志和上游关系型数据库(如 MySQL)。基于这些数据,企业可以进行用户增长分析、业务数据研究,甚至通过业务数据分析精准排查用户问题。

业务数据分析的特点决定了要构建一套可扩展、灵活且低成本的分析架构并非易事,具体表现在以下几个方面:

  1. 高流量和大容量:业务数据的产生量非常大,对存储和分析能力要求高;

  2. 兼顾多种分析需求:既需支持 BI 报表的静态展示,也需满足灵活的 Adhoc 查询;

  3. 多样化数据格式:业务数据通常包含结构化数据与半结构化数据(如 JSON);

  4. 实时性要求:需要对业务数据快速响应,实现及时反馈。

由于这些复杂性,「沉浸式翻译」背后的团队早期选择了通用埋点系统(Google Analytics)作为业务数据分析工具。这种系统只需在网站中插入 JSON 代码,或在 APP 中嵌入 SDK,即可自动采集并上传埋点数据,生成访问量、停留时间、转化漏斗等指标。

然而,通用埋点系统虽然简单易用,但在实际使用中也存在着一些不足:

  1. 数据明细的缺失。通用埋点系统往往不会提供用户具体的访问明细日志,只能在 UI 中查询预设的报表;

  2. 自定义查询能力不足。通用埋点系统的查询模式并非标准 SQL 查询接口,当数据科学家希望构建复杂的 adhoc 查询时,由于缺少 SQL 能力,难以支持复杂的自定义查询;

  3. 成本快速上升。通用埋点系统一般采用阶梯计费模式,往往到了一个阶梯时,费用会翻倍。随着企业流量的持续增长,如果要查询更大范围的业务数据时,成本会迅速增加。

此外,沉浸式翻译团队遵循最小采集原则,不采集可能存在唯一识别能力的数据,不采集具体的用户行为细节,只采集必要的统计意义上的数据而非个性化数据,如翻译耗时,翻译次数和错误异常等。在这个限制下,大部分第三方的数据采集服务被放弃。考虑到沉浸式翻译有大量的海外用户,我们也需尊重海外用户的数据使用和数据存储权, 避免数据跨境传输。基于以上考虑,团队必须细粒度的控制采集行为和存储方式,自建业务数据体系成为唯一选项。

自建业务数据分析体系的复杂性

为了应对通用埋点系统的局限性,「沉浸式翻译」在业务增长到一定阶段后,决定自建一套业务数据分析体系。在进行调研后,技术人员发现传统自建架构多基于 Hadoop 大数据生态,典型实现流程如下:

  1. 在客户端(APP、网站)中埋入 SDK,采集业务数据日志 activity logs;

  2. 使用 Activity gateway 埋点指标网关,收集客户端发来的日志,并将日志转到 Kafka 消息总线;

  3. 利用 Kafka 将日志 logs 落到 Hive 或 Spark 等计算引擎;

  4. 通过 ETL 工具将数据导入数据仓库,生成业务数据分析报表。

虽然这一架构在功能上能够满足需求,但其复杂性和维护成本极高:

  1. Kafka 需要依赖 Zookeeper ,还需要配备 SSD 硬盘保障性能。

  2. 从 Kafka 到 Data Warehouse 需要 kafka-connect ;

  3. Spark 要运行在 YARN 上,ETL 需要 Airflow 管理;

  4. 当 Hive 存储达到上限,可能还需要将 MySQL 换成 TiDB 等分布式数据库。

这种架构不仅需要大量的技术团队投入,还极大增加了运维负担。在如今企业都在不断追求降本增效的背景下,这种架构已不再适合需要简单、高效的业务场景。

为什么选择 Databend Cloud?

「沉浸式翻译」技术团队在做架构选型时选择了 Databend Cloud 进行业务数据分析体系的搭建。Databend Cloud 凭借简洁的架构和灵活性,提供了一种高效且低成本的业务数据分析解决方案:

  • 100% 面向对象存储,完全存储计算分离,显著降低存储成本;

  • Rust 编写的 Query 引擎性能高,价格低廉。在计算资源闲置时自动休眠,不产生额外费用;

  • 支持 100% ANSI SQL ,支持半结构化数据分析(JSON 和自定义 UDF)。当用户有一些比较复杂的 JSON,可以用内置的 JSON 分析能力或自定义的 UDF,分析半结构化数据;

  • 内置 Task 调度驱动 ETL,完全无状态,自动弹性伸缩。

在使用 Databend Cloud 后,「沉浸式翻译」放弃了 Kafka,通过使用 Databend Cloud 建 stage ,将业务日志导入到 S3 中,再用 task 导进 Databend Cloud 中进行数据处理。

  • 日志采集与存储:不再需要 Kafka,直接将埋点日志通过 vector 以 ndjson 格式落到 S3。

  • 数据摄入与处理:在 Databend Cloud 中创建一个 copy task 任务,自动把日志拉出来,落到 S3。很多时候,S3 在 Databend Cloud 中可以当做一个 stage,落到 stage 里面的数据可以被 Databend Cloud 自动摄取,然后在 Databend Cloud 中进行处理,再从 S3 转出去。

  • 查询与报表分析:通过自动休眠的 Warehouse 运行 BI 报表/即席查询,休眠时不产生任何费用。

Databend 作为一家工程师文化的国际公司,其在开源社区的贡献和口碑让沉浸式翻译的技术团队相信Databend对客户数据的尊重和保护。Databend 在海外和境内的服务是相对独立的。虽然沉浸式翻译目前没有对海外用户进行统计和分析,但未来如果有对海外数据分析的需求,架构也方便迁移和继承。

通过上述方式,Databend Cloud 能够以最简化的方式实现企业对高效业务数据分析的需求。

解决方案

对于「沉浸式翻译」来说,构建这样一套业务数据分析架构所需要做的准备工作非常简单。首先,准备两个 Warehouse,一个用于 Task 摄入数据,一个用于 BI 报表查询。摄入数据的时候可以用一个规格小点的 Warehouse,查询的 Warehouse 规格高一点,因为查询通常不会一直查,这样可以节省更多成本。

然后点击 connect 获得一个连接串,这个连接串可以放在 BI 报表用于查询。Databend 提供了各种语言的 Driver。

接下来的准备工作只需三步:

  1. 建表,其中的字段与 NDJSON 格式的日志一致;

  2. 创建一个 stage,将存放业务数据日志的 S3 目录录进来;

  3. 创建一个 task ,每一分钟或者十秒钟执行一次。它会自动把 stage 里的文件导进来,然后自动清理掉。

Vector 配置如下:

```TOML
[sources.input_logs]type = "file"include = ["/path/to/your/logs/*.log"]read_from = "beginning"[transforms.parse_ndjson]type = "remap"inputs = ["input_logs"]source = '''. = parse_json!(string!(.message))'''[sinks.s3_output]type = "aws_s3"inputs = ["parse_ndjson"]bucket = "${YOUR_BUCKET_NAME}"region = "%{YOUR_BUCKET_REGION}"encoding.codec = "json"key_prefix = "logs/%Y/%m/%d"compression = "none"batch.max_bytes = 10485760  # 10MBbatch.timeout_secs = 300    # 5 minutesaws_access_key_id = "${AWS_ACCESS_KEY_ID}"aws_secret_access_key = "${AWS_SECRET_ACCESS_KEY}"
```

准备工作完成后,就可以源源不断地把业务数据日志录进 Databend Cloud 中进行分析。

架构对比与收益

通过对比通用埋点系统、传统 Hadoop 架构和 Databend Cloud,Databend Cloud 具有显著优势:

  • 架构简洁性:摆脱了复杂的大数据生态,无需 Kafka、Airflow 等组件。

  • 成本优化:利用对象存储和弹性计算实现低成本的存储与分析。

  • 灵活性与性能:支持高性能 SQL 查询,满足多样化的业务场景。

此外,Databend Cloud 提供了快照机制,支持数据的时点回溯(Timetravel),可以帮助「沉浸式翻译」确保数据安全性和可恢复性。

最终,「沉浸式翻译」技术团队仅用一个下午便完成了全部 POC 测试,从复杂的 Hadoop 架构切换到 Databend Cloud,极大简化了运维和操作成本。

在构建业务数据埋点系统时,除了存储、计算方面的成本,维护成本也是架构选型的重要因子。Databend 通过对象存储与计算分离的架构革新,彻底改变了传统业务数据分析体系的复杂性。企业可以轻松搭建一套高性能、低成本的业务数据分析架构,实现从数据采集到分析的全流程优化。该方案为「沉浸式翻译」在降本增效的同时释放了数据的最大价值。

关于 Databend

Databend 是一款开源、弹性、低成本,基于对象存储也可以做实时分析的新式数仓。期待您的关注,一起探索云原生数仓解决方案,打造新一代开源 Data Cloud。

👨‍💻‍ Databend Cloud:<https://databend.cn>

📖 Databend 文档:<https://docs.databend.com>

💻 Wechat:Databend

✨ GitHub:<https://github.com/databendlabs/databend>
 

相关文章:

Databend x 沉浸式翻译 | 基于 Databend Cloud 构建高效低成本的业务数据分析体系

「沉浸式翻译」是一个非常流行的双语对照网页翻译扩展工具&#xff0c;用户可以用它来即时翻译外文网页、PDF 文档、ePub 电子书、字幕等。它不仅可以实现原文加译文实时双语对照显示&#xff0c;还支持 Google、OpenAI、DeepL、微软、Gemini、Claude 等数十家翻译平台服务的自…...

cuda的并行运算介绍

cuda是如何使用GPU并行运算的&#xff1a; 以一个函数为例&#xff1a; duplicateWithKeys << <(P 255) / 256, 256 >> > (P,geomState.means2D,geomState.depths,geomState.point_offsets,binningState.point_list_keys_unsorted,binningState.point_list_…...

「全网最细 + 实战源码案例」设计模式——抽象工厂模式

核心思想 抽象工厂模式是一种创建型设计模式&#xff0c;它提供一个接口&#xff0c;用于创建一系列相关或互相依赖的对象&#xff0c;而无需指定它们的具体类。抽象工厂模式解决了产品族的问题&#xff0c;可以管理和创建一组相关的产品。 结构 1. 抽象工厂 定义创建一些列…...

领域驱动设计(DDD)四 订单管理系统实践步骤

以下是基于 领域驱动设计&#xff08;DDD&#xff09; 的订单管理系统实践步骤&#xff0c;系统功能主要包括订单的创建、更新、查询和状态管理&#xff0c;采用 Spring Boot 框架进行实现。 1. 需求分析 订单管理系统的基本功能&#xff1a; 订单创建&#xff1a;用户下单创…...

leetcode 面试经典 150 题:简化路径

链接简化路径题序号71题型字符串解法栈难度中等熟练度✅✅✅ 题目 给你一个字符串 path &#xff0c;表示指向某一文件或目录的 Unix 风格 绝对路径 &#xff08;以 ‘/’ 开头&#xff09;&#xff0c;请你将其转化为 更加简洁的规范路径。 在 Unix 风格的文件系统中规则如下…...

基于 STM32 的智能农业温室控制系统设计

1. 引言 随着农业现代化的发展&#xff0c;智能农业温室控制系统对于提高农作物产量和质量具有重要意义。该系统能够实时监测温室内的环境参数&#xff0c;如温度、湿度、光照强度和土壤湿度等&#xff0c;并根据这些参数自动调节温室设备&#xff0c;如通风扇、加热器、加湿器…...

【Spring Boot】掌握 Spring 事务:隔离级别与传播机制解读与应用

前言 &#x1f31f;&#x1f31f;本期讲解关于spring 事务传播机制介绍~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话…...

【Postgres_Python】使用python脚本将多个PG数据库合并为一个PG数据库

需要合并的多个PG数据库表个数和结构一致&#xff0c;这里提供一种思路&#xff0c;选择sql语句insert插入的方式进行&#xff0c;即将其他PG数据库的每个表内容插入到一个PG数据库中完成数据库合并 示例代码说明&#xff1a; 选择一个数据库导出表结构为.sql文件&#xff08…...

Tailwind CSS v4.0 发布

Holy shit its actually done &#xff01; 1 月 22 日&#xff0c;Tailwind CSS 正式发布了 4.0 版本&#xff0c;针对性能和灵活性进行了优化&#xff0c;重新构想了配置和定制体验&#xff0c;并充分利用了 Web 平台提供的最新进展。 新的高性能引擎- 完整构建速度提高 5 …...

pandas基础:文件的读取和写入

文件的读取和写入 读取csv文件 csv文件&#xff1a; name,age,city Alice,25,New York Bob,30,Los Angelesread_csv(filename) header&#xff1a;如 何处理文件的第一行。header0将第一行作为列名&#xff0c;headerNone表示文件中没有列名&#xff0c;所有行都是数据。 im…...

【MySQL — 数据库增删改查操作】深入解析MySQL的create insert 操作

数据库CRUD操作 1 CRUD简介 CURD是对数据库中的记录进行基本的增删改查操作: 2. Create 新增 语法 INSERT [INTO] table_name[(column [&#xff0c;column] ...)] VALUES(value_list)[&#xff0c;(value_list)] ... # value 后面的列的个数和类型&#xff0c;要和表结构匹配…...

每日OJ_牛客_小红的子串_滑动窗口+前缀和_C++_Java

目录 牛客_小红的子串_滑动窗口前缀和 题目解析 C代码 Java代码 牛客_小红的子串_滑动窗口前缀和 小红的子串 描述&#xff1a; 小红拿到了一个长度为nnn的字符串&#xff0c;她准备选取一段子串&#xff0c;满足该子串中字母的种类数量在[l,r]之间。小红想知道&…...

HTTP 配置与应用(局域网)

想做一个自己学习的有关的csdn账号&#xff0c;努力奋斗......会更新我计算机网络实验课程的所有内容&#xff0c;还有其他的学习知识^_^&#xff0c;为自己巩固一下所学知识&#xff0c;下次更新HTTP 配置与应用&#xff08;不同网段&#xff09;。 我是一个萌新小白&#xf…...

ultralytics 是什么?

ultralytics 是一个用于计算机视觉任务的 Python 库&#xff0c;专注于提供高效、易用的目标检测、实例分割和图像分类工具。它最著名的功能是实现 YOLO&#xff08;You Only Look Once&#xff09; 系列模型&#xff0c;特别是最新的 YOLOv8。 1. YOLO 是什么&#xff1f; YO…...

AI竞争:从技术壁垒到用户数据之争

标题&#xff1a;AI竞争&#xff1a;从技术壁垒到用户数据之争 文章信息摘要&#xff1a; AI市场呈现开放模型与封闭模型并存的双轨发展态势&#xff0c;但核心竞争力已从模型技术转向用户数据积累和使用习惯培养。商业模式正在多元化发展&#xff0c;从早期的价格战转向subsc…...

MySQL 主从复制(单组传统复制,GTID复制。双主复制)

案例环境 单组复制 master&#xff1a; 192.168.180.143 slave01&#xff1a;192.168.180.144 双组复制 master01&#xff1a;192.168.180.143 master02&#xff1a;192.168.180.144 案例过程 准备工作 关闭所有防火墙 setenforce 0 && systemctl stop firewa…...

python学opencv|读取图像(四十)掩模:三通道图像的局部覆盖

【1】引言 前序学习了使用numpy创建单通道的灰色图像&#xff0c;并对灰色图像的局部进行了颜色更改&#xff0c;相关链接为&#xff1a; python学opencv|读取图像&#xff08;九&#xff09;用numpy创建黑白相间灰度图_numpy生成全黑图片-CSDN博客 之后又学习了使用numpy创…...

vue3 中如何监听 props 中的值的变化

在 Vue 3 中&#xff0c;你可以使用 watch 函数来监听组件的 props 值的变化。watch 函数允许你观察一个或多个响应式数据源&#xff0c;并在这些数据源发生变化时执行回调函数。 以下是一个示例&#xff0c;展示了如何在 Vue 3 中使用 watch 来监听 props 中的值的变化&#…...

Scrapy之一个item包含多级页面的处理方案

目标 在实际开发过程中&#xff0c;我们所需要的数据往往需要通过多个页面的数据汇总得到&#xff0c;通过列表获取到的数据只有简单的介绍。站在Scrapy框架的角度来看&#xff0c;实际上就是考虑如何处理一个item包含多级页面数据的问题。本文将以获取叶子猪网站的手游排行榜及…...

hive 自动检测、自动重启、记录检测日志、自动清理日志

最终效果 定时检测hive运行状态&#xff0c;进程不存在或者进程存在但是不监听端口的hiveserver2&#xff0c;自动重新拉起每次检测脚本执行的日志都会保存在log目录下.check文件&#xff0c;每一个月一个文件每月15日&#xff0c;删除2月前的检测日志开启hive自带日志输出后&…...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录

ASP.NET Core 是一个跨平台的开源框架&#xff0c;用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录&#xff0c;以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

【机器视觉】单目测距——运动结构恢复

ps&#xff1a;图是随便找的&#xff0c;为了凑个封面 前言 在前面对光流法进行进一步改进&#xff0c;希望将2D光流推广至3D场景流时&#xff0c;发现2D转3D过程中存在尺度歧义问题&#xff0c;需要补全摄像头拍摄图像中缺失的深度信息&#xff0c;否则解空间不收敛&#xf…...

Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!

一、引言 在数据驱动的背景下&#xff0c;知识图谱凭借其高效的信息组织能力&#xff0c;正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合&#xff0c;探讨知识图谱开发的实现细节&#xff0c;帮助读者掌握该技术栈在实际项目中的落地方法。 …...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

React---day11

14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store&#xff1a; 我们在使用异步的时候理应是要使用中间件的&#xff0c;但是configureStore 已经自动集成了 redux-thunk&#xff0c;注意action里面要返回函数 import { configureS…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

多模态图像修复系统:基于深度学习的图片修复实现

多模态图像修复系统:基于深度学习的图片修复实现 1. 系统概述 本系统使用多模态大模型(Stable Diffusion Inpainting)实现图像修复功能,结合文本描述和图片输入,对指定区域进行内容修复。系统包含完整的数据处理、模型训练、推理部署流程。 import torch import numpy …...

给网站添加live2d看板娘

给网站添加live2d看板娘 参考文献&#xff1a; stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下&#xff0c;文章也主…...