神经网络|(二)sigmoid神经元函数
【1】引言
在前序学习进程中,我们已经了解了基本的二元分类器和神经元的构成,文章学习链接为:
神经网络|(一)加权平均法,感知机和神经元-CSDN博客
在此基础上,我们认识到神经元本身在做二元分类,是一种非此即彼的选择。
由于不同的数据所占的权重不同,二元分类结果也一定收到权重的影响,为此,必须使用数学表达这种影响力。
在神经网络相关研究的漫长发展进程中,研究范围从单个因素到多个因素,必须关注无数的二元分类结果同时作用后获得的最终分类结果,于是sigmoid()函数被提出。
【2】二元分类结果数学表达
认识感知机的二元分类本质,是研究sigmoid()函数的基础。
这里先创造四个矩阵,这三个矩阵分别代表元素1,元素2,元素1和权重和元素2的权重。
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果
进行二元分类计算:
#二元分类计算
for i in range (5):if a[0,i]*c[0,i]+b[0,i]*d[0,i]-k>0: #阈值计算,满足条件时取1,否则取0e[0,i]=1else:e[0,i]=0print('e[0,',i,']=',e[0,i]) #输出阈值计算结果
绘制二元分类的效果:
#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,e[0,x]) #对阈值计算结果绘图
plt.savefig('ganzhiji.png') #保存图像
plt.show() #输出图像
这里使用的阈值判断函数为:
for i in range (5):if a[0,i]*c[0,i]+b[0,i]*d[0,i]-k>0: #阈值计算,满足条件时取1,否则取0e[0,i]=1else:e[0,i]=0
代码运行后的输出图像为:
图1
图1真实地反映了非此即彼的二元分类效果。
需要注意的是,由于元素的权重使用随机数生成,所以每次运行上述程序,获得的效果可能不一样。
【3】sigmoid函数
实际上,二元分类效果可能不是两个元素算一次就进行判断,而是多个结果互相叠加在一起,也就是把阈值判断函数改为:
f=0 #用来存储二元分类的综合计算结果 #二元分类计算 for i in range (5):if i==0:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k # 阈值计算else:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1] # 阈值计算 if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0f=1 else:f=0
代码运行后,获得的输出图像为:
图2
此时获得的数据分别为:
图3
由图3可见,因为最后的e[0,4]>0,所以f=1。
此时的完整代码为:
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果
f=0 #用来存储二元分类的综合计算结果
#二元分类计算
for i in range (5):if i==0:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k # 阈值计算else:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1] # 阈值计算
if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0f=1
else:f=0#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵
print('f=',f) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,e[0,x]) #对阈值计算结果绘图
plt.savefig('ganzhiji.png') #保存图像
plt.show() #输出图像
sigmoid()函数就是在上述基础上,进一步优化函数表达式,把所有的加权计算结果变成指数函数的变量,并且指数函数还设置成分式的一部分。相应的,有如下函数:
如果把简化为-x,该函数相应简化为:
函数对应的图像为:
图4
图4是平滑过渡图像,并且输出结果限定在(0,1)范围内。
绘制图4的代码为:
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块#创造矩阵
t=np.linspace(-10,10,100) #自变量
y0=np.exp(-t) #指数函数
y=1/(1+y0) #因变量
plt.plot(t,y) #绘制图像
plt.title('sigmoid() function') #图像上设置图名
plt.savefig('sigmoid() function.png') #保存图像
plt.show() #显示图像
【4】函数验证
为验证sigmoid()函数,可以在上述示例中的代码plt.plot(x,e[0,x]) #对阈值计算结果绘图
修改为:
plt.plot(x,1/(1+np.exp(-e[0,x]))) #对阈值计算结果绘图
此时运行代码获得的图像为:
图5
由图5可见,复杂多变的实际情况中,sigmoid()函数的输出结果也是在(0,1)范围内。所以,sigmoid()函数本身具有很强的实用性。
此时的完整代码为:
import numpy as np #引入numpy模块
import matplotlib.pyplot as plt #引入matplotlib模块#创造矩阵
a = np.random.randint(5,9,size=(1,5)) #矩阵
b = np.random.randint(1,5,size=(1,5)) #矩阵
c = np.random.randn(1,5) #矩阵
d = np.random.randn(1,5) #矩阵
#阈值开关
k=1
#空矩阵
e =np.zeros((1,5),np.uint8) #用来存储二元分类的计算结果
f=0 #用来存储二元分类的综合计算结果
#二元分类计算
for i in range (5):if i==0:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k # 阈值计算else:e[0, i] = a[0, i] * c[0, i] + b[0, i] * d[0, i] - k+e[0,i-1] # 阈值计算
if e[0,4]>0: #最后计算结果,超过阈值开关取1,否则取0f=1
else:f=0#绘制二元分类计算的结果
print('a=',a) #输出矩阵
print('b=',b) #输出矩阵
print('c=',c) #输出矩阵
print('d=',d) #输出矩阵
print('e=',e) #输出矩阵
print('f=',f) #输出矩阵
x=np.arange(0,5,1) #定义一个自变量
plt.plot(x,1/(1+np.exp(-e[0,x]))) #对阈值计算结果绘图
plt.savefig('sigmoid.png') #保存图像
plt.show() #输出图像
需要注意的是,由于元素的权重使用随机数生成,所以每次运行上述程序,获得的效果可能不一样。
【5】总结
探究了sigmoid()函数,研究了多因素的综合作用。
相关文章:

神经网络|(二)sigmoid神经元函数
【1】引言 在前序学习进程中,我们已经了解了基本的二元分类器和神经元的构成,文章学习链接为: 神经网络|(一)加权平均法,感知机和神经元-CSDN博客 在此基础上,我们认识到神经元本身在做二元分类,是一种非…...

w-form-select.vue(自定义下拉框组件)(与后端字段直接相关性)
文章目录 1、w-form-select.vue 组件中每个属性的含义2、实例3、源代码 1、w-form-select.vue 组件中每个属性的含义 好的,我们来详细解释 w-form-select.vue 组件中每个属性的含义,并用表格列出它们是否与后端字段直接相关: 属性解释表格&…...

【JVM】垃圾收集器详解
你将学到 1. Serial 收集器 2. ParNew 收集器 3. Parallel Scavenge 收集器 4. Serial Old 收集器 5. Parallel Old 收集器 6. CMS 收集器 7. G1 收集器 在 Java 中,垃圾回收(GC)是自动管理内存的一个重要机制。HotSpot JVM 提供了多种…...

python创建一个httpServer网页上传文件到httpServer
一、代码 1.server.py import os from http.server import SimpleHTTPRequestHandler, HTTPServer import cgi # 自定义请求处理类 class MyRequestHandler(SimpleHTTPRequestHandler):# 处理GET请求def do_GET(self):if self.path /:# 响应200状态码self.send_response(2…...

【Maui】提示消息的扩展
文章目录 前言一、问题描述二、解决方案三、软件开发(源码)3.1 消息扩展库3.2 消息提示框使用3.3 错误消息提示使用3.4 问题选择框使用 四、项目展示 前言 .NET 多平台应用 UI (.NET MAUI) 是一个跨平台框架,用于使用 C# 和 XAML 创建本机移…...

租车骑绿岛
租车骑绿岛 真题目录: 点击去查看 E 卷 100分题型 题目描述 部门组织绿岛骑行团建活动。租用公共双人自行车,每辆自行车最多坐两人,最大载重M。给出部门每个人的体重,请问最多需要租用多少双人自行车。 输入描述 第一行两个数字m、n&…...

Pytorch - YOLOv11自定义资料训练
►前言 本篇将讲解目前最新推出的YOLOv11搭配Roboflow进行自定义资料标注训练流程,透过Colab上进行实作说明,使大家能够容易的了解YOLOv11的使用。 ►YOLO框架下载与导入 ►Roboflow的资料收集与标注 进行自定义资料集建置与上传 透过Roboflow工具进行…...

微服务与docker
准备工作 在课前资料中给大家提供了黑马商城项目的资料,我们需要先导入这个单体项目。不过需要注意的是,本篇及后续的微服务学习都是基于Centos7系统下的Docker部署,因此你必须做好一些准备: Centos7的环境及一个好用的SSH客户端装好Docker会使用Docker如果是学习过上面Doc…...

1.23 消息队列
使用消息队列,实现两个终端相互聊天 程序代码: w1.c #include <stdio.h> #include <string.h> #include <unistd.h> #include <stdlib.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h&g…...

【华为路由的arp配置】
华为路由的arp配置 ARP:IP地址与MAC地址的映射。 R1: g0/0/0:10.1.1.254/24 g0/0/1:10.1.2.254/24 PC1: 10.1.1.1/16 PC2: 10.1.1.2/16 PC3: 10.1.2.3/16 动态ARP 查看PC1的arp表,可以看到,列表为空。 查看R1的arp表 在PC3上ping命令测…...

绘制决策树的尝试1
代码复制 import pydotplus 复制 - 这一行代码用于导入pydotplus模块,这是一个用来在Python中创建图形的工具。2. python from IPython.display import Image 这一行代码用于从IPython显示模块中导入Image类,它允许我们在Jupyter笔记本中显示图像。…...

概率论里的特征函数,如何用卷积定理去理解
概率论里的特征函数,如何用卷积定理去理解_哔哩哔哩_bilibili...

Spring 是如何解决循环依赖问题
Spring 框架通过 三级缓存 机制来解决循环依赖问题。循环依赖是指两个或多个 Bean 相互依赖,形成一个闭环,例如 Bean A 依赖 Bean B,而 Bean B 又依赖 Bean A。Spring 通过提前暴露未完全初始化的 Bean 来解决这个问题。 以下是 Spring 解决…...

Linux 目录操作详解
Linux目录操作详解 1. 获取当前工作目录1.1 getcwd()1.2 get_current_dir_name() 2. 切换工作目录2.1 chdir() 3. 创建和删除目录3.1 mkdir()3.2 rmdir() 4. 获取目录中的文件列表4.1 opendir() 打开目录4.2 readdir() 读取目录内容4.3 closedir() 关闭目录 5. dirent 结构体6.…...

Elasticsearch的经典面试题及详细解答
以下是一些Elasticsearch的经典面试题及详细解答: 一、基础概念与原理 什么是Elasticsearch? 回答: Elasticsearch是一个基于Lucene的分布式搜索引擎,提供了RESTful API,支持多租户能力。它能够快速、近实时地存储、搜…...

Linux-arm(1)ATF启动流程
Linux-arm(1)ATF启动流量 Author:Once Day Date:2025年1月22日 漫漫长路有人对你微笑过嘛… 全系列文章可查看专栏: Linux实践记录_Once_day的博客-CSDN博客 参考文档: ARM Trusted Firmware分析——启动、PSCI、OP-TEE接口 Arnold Lu 博…...

C#编程:List.ForEach与foreach循环的深度对比
在C#中,List<T>.ForEach 方法和传统的 foreach 循环都用于遍历列表中的元素并对每个元素执行操作,但它们之间有一些关键的区别。 List<T>.ForEach 方法 方法签名:public void ForEach(Action<T> action)类型:…...

C语言文件操作:标准库与系统调用实践
目录 1、C语言标准库文件操作 1.1.题目要求: 1.2.函数讲解: fopen 函数原型 参数 常用的打开模式 返回值 fwrite函数 函数原型 参数 返回值 注意事项 fseek函数 函数原型 参数 返回值 fread函数 函数原型 参数 返回值 fclose 函数…...

代码随想录 栈与队列 test 7
347. 前 K 个高频元素 - 力扣(LeetCode) 首先想到哈希,用key来存元素,value来存出现次数,最后进行排序,时间复杂度约为o(nlogn)。由于只需求前k个,因此可以进行优化,利用堆来维护这…...

C语言练习(21)
有一行电文,已按下面规律译成密码: A→Za→Z B→Yb→y C→Xc→X 即第1个字母变成第26个字母,第2个字母变成第25个字母,第i个字母变成第(26-i十1)个字母。非字母字符不变。假如已知道密码是Umtorhs&…...

智能手机“混战”2025:谁将倒下而谁又将突围?
【潮汐商业评论原创】 “去年做手机比较艰难,几乎每个品牌都在调价、压货,像华为这种以前都不给我们分货的厂商,也开始成为我的主要库存。不过今年开头比较好,20号国补一开始,店里的人流和手机销量就明显涨了不少&…...

计算机图形学:实验一 OpenGL基本绘制
1.OpenGL的环境配置: 集成开发环境Visual Studio Community 2019的安装: 在Windows一栏选择使用C的桌面开发;再转到“单个组件”界面,在“编译器、生成工具和运行时”一栏选择用于“Windows的C CMake工具”;然后转到…...

二分查找题目:快照数组
文章目录 题目标题和出处难度题目描述要求示例数据范围 解法思路和算法代码复杂度分析 题目 标题和出处 标题:快照数组 出处:1146. 快照数组 难度 7 级 题目描述 要求 实现支持下列接口的快照数组: SnapshotArray(int length) \textt…...

深度学习|表示学习|卷积神经网络|参数共享是什么?|07
如是我闻: Parameter Sharing(参数共享)是卷积神经网络(CNN)的一个重要特性,帮助它高效地处理数据。参数共享的本质就是参数“本来也没有变过”。换句话说,在卷积层中,卷积核的参数&…...

基于相机内参推导的透视投影矩阵
基于相机内参推导透视投影矩阵(splatam): M c a m [ 2 ⋅ f x w 0.0 ( w − 2 ⋅ c x ) w 0.0 0.0 2 ⋅ f y h ( h − 2 ⋅ c y ) h 0.0 0 0 f a r n e a r n e a r − f a r 2 f a r ⋅ n e a r n e a r − f a r 0.0 0.0 − 1.0 0.0 ] M_…...

浅析Dubbo 原理:架构、通信与调用流程
一、Dubbo 简介 Dubbo 是阿里巴巴开源的高性能、轻量级的 Java RPC(Remote Procedure Call,远程过程调用)框架,旨在实现不同服务之间的远程通信和调用。在分布式系统中,不同服务可能部署在不同的服务器上,D…...

03垃圾回收篇(D3_垃圾收集器的选择及相关参数)
目录 学习前言 一、收集器的选择 二、GC日志参数 三、垃圾收集相关的常用参数 四、内存分配与回收策略 1. 对象优先在Eden分配 2. 大对象直接进入老年代 3. 长期存活的对象将进入老年代 4. 动态对象年龄判定 5. 空间分配担保 学习前言 本章主要学习垃圾收集器的选择及…...

一、引论,《组合数学(第4版)》卢开澄 卢华明
零、前言 发现自己数数题做的很烂,重新学一遍组合数学吧。 参考卢开澄 卢华明 编著的《组合数学(第4版)》,只打算学前四章。 通过几个经典问题来了解组合数学所研究的内容。 一、幻方问题 据说大禹治水之前,河里冒出来一只乌龟,…...

Vue3+TS 实现批量拖拽文件夹上传图片组件封装
1、html 代码: 代码中的表格引入了 vxe-table 插件 <Tag /> 是自己封装的说明组件 表格列表这块我使用了插槽来增加扩展性,可根据自己需求,在组件外部做调整 <template><div class"dragUpload"><el-dialo…...

二叉树的所有路径(力扣257)
因为题目要求路径是从上到下的,所以最好采用前序遍历。这样可以保证按从上到下的顺序将节点的值存入一个路径数组中。另外,此题还有一个难点就是如何求得所有路径。为了解决这个问题,我们需要用到回溯。回溯和递归不分家,每递归一…...