当前位置: 首页 > news >正文

【深度学习】 自动微分

自动微分

正如上节所说,求导是几乎所有深度学习优化算法的关键步骤。
虽然求导的计算很简单,只需要一些基本的微积分。
但对于复杂的模型,手工进行更新是一件很痛苦的事情(而且经常容易出错)。

深度学习框架通过自动计算导数,即自动微分(automatic differentiation)来加快求导。
实际中,根据设计好的模型,系统会构建一个计算图(computational graph),
来跟踪计算是哪些数据通过哪些操作组合起来产生输出。
自动微分使系统能够随后反向传播梯度。
这里,反向传播(backpropagate)意味着跟踪整个计算图,填充关于每个参数的偏导数。

一个简单的例子

作为一个演示例子,(假设我们想对函数 y = 2 x ⊤ x y=2\mathbf{x}^{\top}\mathbf{x} y=2xx关于列向量 x \mathbf{x} x求导)。
首先,我们创建变量x并为其分配一个初始值。

import torchx = torch.arange(4.0)
x

在这里插入图片描述
[在我们计算 y y y关于 x \mathbf{x} x的梯度之前,需要一个地方来存储梯度。]
重要的是,我们不会在每次对一个参数求导时都分配新的内存。
因为我们经常会成千上万次地更新相同的参数,每次都分配新的内存可能很快就会将内存耗尽。
注意,一个标量函数关于向量 x \mathbf{x} x的梯度是向量,并且与 x \mathbf{x} x具有相同的形状。

x.requires_grad_(True)  # 等价于x=torch.arange(4.0,requires_grad=True)
x.grad  # 默认值是None

在 PyTorch 里,requires_grad 是张量(Tensor)的一个属性,用于表明是否要对该张量进行梯度计算。若 requires_grad 为 True,那么在后续的计算中,PyTorch 会自动追踪与该张量相关的所有运算,并且可以通过反向传播算法计算其梯度。

(现在计算 y y y)

y = 2 * torch.dot(x, x)
y

在 PyTorch 里,torch.dot 函数用于计算两个一维张量(也就是向量)的点积。点积的计算规则是将两个向量对应位置的元素相乘,然后把这些乘积相加。在代码里,torch.dot(x, x) 计算的是向量 x 与自身的点积。假设 x = [x₁, x₂, x₃, ..., xₙ],那么 torch.dot(x, x) 的结果就是 x 1 2 + x 2 2 + x 3 2 + . . . + x n 2 x_1^2 + x_2^2 + x_3^2 + ... + x_n^2 x12+x22+x32+...+xn2

在这里插入图片描述

grad_fn=<MulBackward0> 表明 y 是经过乘法操作得到的,并且可以进行反向传播来计算梯度。

x是一个长度为4的向量,计算xx的点积,得到了我们赋值给y的标量输出。接下来,[通过调用反向传播函数来自动计算y关于x每个分量的梯度],并打印这些梯度。

y.backward()#计算并存储 y 关于 x 的梯度
x.grad#访问梯度值

y.backward() 这行代码的作用是执行反向传播算法。反向传播的核心目的是计算标量 y 关于所有具有requires_grad=True 的输入张量(这里就是 x)的梯度。它会根据链式法则,从 y 开始逆向计算每个中间变量和输入变量的梯度,并将这些梯度存储在相应张量的 grad 属性中。

x.grad 用于获取张量 x 的梯度。在调用 y.backward() 之前,x.grad 的值通常为 None。调用 y.backward() 之后,PyTorch 会计算并存储 y 关于 x 的梯度,此时通过 x.grad 就可以访问到这些梯度值。

在这里插入图片描述
函数 y = 2 x ⊤ x y=2\mathbf{x}^{\top}\mathbf{x} y=2xx关于 x \mathbf{x} x的梯度应为 4 x 4\mathbf{x} 4x
让我们快速验证这个梯度是否计算正确。

x.grad == 4 * x

在这里插入图片描述
[现在计算x的另一个函数。]

# 在默认情况下,PyTorch会累积梯度,我们需要清除之前的值
x.grad.zero_()
y = x.sum()
y.backward()
x.grad

x.grad.zero_()
在 PyTorch 里,当我们进行多次反向传播时,梯度会累积在 x.grad 中。x.grad.zero_() 这行代码是一个原地操作,其作用是将 x 的梯度清零,以避免之前的梯度对当前计算产生影响。

在这里插入图片描述

非标量变量的反向传播

y不是标量时,向量y关于向量x的导数的最自然解释是一个矩阵。
对于高阶和高维的yx,求导的结果可以是一个高阶张量。

然而,虽然这些更奇特的对象确实出现在高级机器学习中(包括[深度学习中]),
但当调用向量的反向计算时,我们通常会试图计算一批训练样本中每个组成部分的损失函数的导数。
这里(我们的目的不是计算微分矩阵,而是单独计算批量中每个样本的偏导数之和。)

# 对非标量调用backward需要传入一个gradient参数,该参数指定微分函数关于self的梯度。
# 本例只想求偏导数的和,所以传递一个1的梯度是合适的
x.grad.zero_()
y = x * x
# 等价于y.backward(torch.ones(len(x)))
y.sum().backward()
x.grad

在这里插入图片描述

分离计算

有时,我们希望[将某些计算移动到记录的计算图之外]。
例如,假设y是作为x的函数计算的,而z则是作为yx的函数计算的。
想象一下,我们想计算z关于x的梯度,但由于某种原因,希望将y视为一个常数,
并且只考虑到xy被计算后发挥的作用。

这里可以分离y来返回一个新变量u,该变量与y具有相同的值,
但丢弃计算图中如何计算y的任何信息。
换句话说,梯度不会向后流经ux
因此,下面的反向传播函数计算z=u*x关于x的偏导数,同时将u作为常数处理,
而不是z=x*x*x关于x的偏导数。

x.grad.zero_()
y = x * x
u = y.detach()
z = u * xz.sum().backward()
x.grad == u

detach() 方法用于从计算图中分离出一个张量。调用 y.detach() 会返回一个新的张量 u,这个新张量和 y 具有相同的数据,但它不会再与原计算图产生关联,即不会再参与反向传播。也就是说,在后续的计算中,PyTorch 不会追踪 u 的梯度。

在这里插入图片描述
由于记录了y的计算结果,我们可以随后在y上调用反向传播,
得到y=x*x关于的x的导数,即2*x

x.grad.zero_()
y.sum().backward()
x.grad == 2 * x

在这里插入图片描述

Python控制流的梯度计算

使用自动微分的一个好处是:
[即使构建函数的计算图需要通过Python控制流(例如,条件、循环或任意函数调用),我们仍然可以计算得到的变量的梯度]。
在下面的代码中,while循环的迭代次数和if语句的结果都取决于输入a的值。

def f(a):b = a * 2while b.norm() < 1000:b = b * 2if b.sum() > 0:c = belse:c = 100 * breturn c

b.norm() 若不指定参数,默认计算的是 2 - 范数(也被称作欧几里得范数)。对于向量而言,2 - 范数是向量各个元素平方和的平方根;对于矩阵来说,2 - 范数是矩阵的最大奇异值

让我们计算梯度。

a = torch.randn(size=(), requires_grad=True)
d = f(a)
d.backward()

torch.randn 是 PyTorch 里用于生成服从标准正态分布(均值为 0,标准差为 1)的随机数的函数。其语法格式通常为 torch.randn(*size, out=None, dtype=None, layout=torch.strided, device=None, requires_grad=False),其中 size 参数用于指定生成张量的形状。

我们现在可以分析上面定义的f函数。
请注意,它在其输入a中是分段线性的。
换言之,对于任何a,存在某个常量标量k,使得f(a)=k*a,其中k的值取决于输入a,因此可以用d/a验证梯度是否正确。

a.grad == d / a

在这里插入图片描述

相关文章:

【深度学习】 自动微分

自动微分 正如上节所说&#xff0c;求导是几乎所有深度学习优化算法的关键步骤。 虽然求导的计算很简单&#xff0c;只需要一些基本的微积分。 但对于复杂的模型&#xff0c;手工进行更新是一件很痛苦的事情&#xff08;而且经常容易出错&#xff09;。 深度学习框架通过自动…...

字节跳动自研HTTP开源框架Hertz简介附使用示例

字节跳动自研 HTTP 框架 Hertz Hertz 是字节跳动自研的高性能 HTTP 框架&#xff0c;专为高并发、低延迟的场景设计。它基于 Go 语言开发&#xff0c;结合了字节跳动在微服务架构中的实践经验&#xff0c;旨在提供更高效的 HTTP 服务开发体验。 1. 背景介绍 随着字节跳动业务…...

skynet 源码阅读 -- 核心概念服务 skynet_context

本文从 Skynet 源码层面深入解读 服务&#xff08;Service&#xff09; 的创建流程。从最基础的概念出发&#xff0c;逐步深入 skynet_context_new 函数、相关数据结构&#xff08;skynet_context, skynet_module, message_queue 等&#xff09;&#xff0c;并通过流程图、结构…...

每日十题八股-2025年1月23日

1.快排为什么时间复杂度最差是O&#xff08;n^2&#xff09; 2.快排这么强&#xff0c;那冒泡排序还有必要吗&#xff1f; 3.如果要对一个很大的数据集&#xff0c;进行排序&#xff0c;而没办法一次性在内存排序&#xff0c;这时候怎么办&#xff1f; 4.面试官&#xff1a;你的…...

MongoDB部署模式

目录 单节点模式&#xff08;Standalone&#xff09; 副本集模式&#xff08;Replica Set&#xff09; 分片集群模式&#xff08;Sharded Cluster&#xff09; MongoDB有多种部署模式&#xff0c;可以根据业务需求选择适合的架构和部署方式。 单节点模式&#xff08;Standa…...

opencv笔记2

图像灰度 彩色图像转化为灰度图像的过程是图像的灰度化处理。彩色图像中的每个像素的颜色由R&#xff0c;G&#xff0c;B三个分量决定&#xff0c;而每个分量中可取值0-255&#xff0c;这样一个像素点可以有256*256*256变化。而灰度图像是R&#xff0c;G&#xff0c;B三个分量…...

springboot使用ssl连接elasticsearch

使用es时ssl证书报错 unable to find valid certification path to requested target 1.依赖 <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-elasticsearch</artifactId></dependency>2…...

Linux内核中的InfiniBand核心驱动:verbs.c分析

InfiniBand(IB)是一种高性能、低延迟的网络互连技术,广泛应用于高性能计算(HPC)、数据中心和云计算等领域。Linux内核中的InfiniBand子系统通过提供一组核心API(称为Verbs API)来支持InfiniBand设备的操作。drivers/infiniband/core/verbs.c是InfiniBand核心驱动的重要组…...

把网站程序数据上传到服务器的方法和注意事项

将网站程序数据上传到服务器是一个常见的网站开发和部署流程。主要涉及到FTP上传、FileZilla、rsync(在Linux下)、或其他相关的文件同步工具。以下是一般步骤和方法&#xff1a; 使用FTP&#xff1a; 1. 选择FTP客户端软件&#xff1a; - 常见的FTP客户端包括FileZilla(开源)、…...

完全平方数——唯一分解定理

文章目录 一、唯一分解定理是什么&#xff1f;1.定义2.示例3.代码模板 二、例题1>问题描述&#xff08;2021蓝桥杯省赛&#xff09;输入格式输出格式样例输入 1样例输出 1样例输入 2样例输出 2评测用例规模与约定 2>解题思路3>假娃3>C嘎嘎 一、唯一分解定理是什么&…...

(详细)Springboot 整合动态多数据源 这里有mysql(分为master 和 slave) 和oracle,根据不同路径适配不同数据源

文章目录 Springboot 整合多动态数据源 这里有mysql&#xff08;分为master 和 slave&#xff09; 和oracle1. 引入相关的依赖2. 创建相关配置文件3. 在相关目录下进行编码&#xff0c;不同路径会使用不同数据源 Springboot 整合多动态数据源 这里有mysql&#xff08;分为maste…...

mock可视化生成前端代码

介绍&#xff1a;mock是我们前后端分离的必要一环、ts、axios编写起来也很麻烦。我们就可以使用以下插件&#xff0c;来解决我们的问题。目前支持vite和webpack。&#xff08;配置超级简单&#xff01;&#xff09; 欢迎小伙伴们提issues、我们共建。提升我们的开发体验。 vi…...

Spring Boot(6)解决ruoyi框架连续快速发送post请求时,弹出“数据正在处理,请勿重复提交”提醒的问题

一、整个前言 在基于 Ruoyi 框架进行系统开发的过程中&#xff0c;我们常常会遇到各种有趣且具有挑战性的问题。今天&#xff0c;我们就来深入探讨一个在实际开发中较为常见的问题&#xff1a;当连续快速发送 Post 请求时&#xff0c;前端会弹出 “数据正在处理&#xff0c;请…...

鸿蒙Harmony json转对象(1)

案例1 运行代码如下 上图的运行结果如下: 附加1 Json_msg interface 案例2 import {JSON } from kit.ArkTS; export interface commonRes {status: numberreturnJSON: ESObject;time: string } export interface returnRes {uid: stringuserType: number; }Entry Component …...

常见的RocketMQ面试题及其简要答案

以下是一些常见的RocketMQ面试题及其简要答案&#xff1a; 一、基础概念与架构 简述RocketMQ是什么&#xff0c;并说明其主要作用。 答案&#xff1a; RocketMQ&#xff1a;是阿里巴巴在2012年开源的一款分布式消息中间件&#xff0c;目前已经捐赠给Apache软件基金会&#xff…...

C#Object类型的索引,序列化和反序列化

前言 最近在编写一篇关于标准Mes接口框架的文章。其中有一个非常需要考究的内容时如果实现数据灵活和可使用性强。因为考虑数据灵活性&#xff0c;所以我一开始选取了Object类型作为数据类型&#xff0c;Object作为数据Value字段&#xff0c;String作为数据Key字段&#xff0c…...

Unity3D项目开发中的资源加密详解

前言 在Unity3D游戏开发中&#xff0c;保护游戏资源不被非法获取和篡改是至关重要的一环。资源加密作为一种有效的技术手段&#xff0c;可以帮助开发者维护游戏的知识产权和安全性。本文将详细介绍Unity3D项目中如何进行资源加密&#xff0c;并提供相应的技术详解和代码实现。…...

微调Qwen2:7B模型,加入未知信息语料

对于QWen2这样的模型,在微调的时候,语料的投喂格式满足ChatML这样的格式!!! OpenAI - ChatML: 下面是ChatML格式的介绍: https://github.com/openai/openai-python/blob/release-v0.28.0/chatml.mdhttps://github.com/openai/openai-python/blob/release-v0.28.0/chat…...

【Ubuntu】安装SSH启用远程连接

【Ubuntu】安装OpenSSH启用远程连接 零、安装软件 使用如下代码安装OpenSSH服务端&#xff1a; sudo apt install openssh-server壹、启动服务 使用如下代码启动OpenSSH服务端&#xff1a; sudo systemctl start ssh贰、配置SSH&#xff08;可跳过&#xff09; 配置文件 …...

【理论】测试开发工程师进阶路线

一、腾讯与阿里的质量保证服务参考 阿里云效测试能力与架构 腾讯 WeTest 测试能力全景图 二、测试开发技术体系 1.用户端测试&#xff1a; Web/App 测试 Web/App 自动化测试 用户端专项测试 用户端安全测试 2.服务端测试&#xff1a; 接口协议与 Mock 接口自动化测试 服务端…...

内存分配函数malloc kmalloc vmalloc

内存分配函数malloc kmalloc vmalloc malloc实现步骤: 1)请求大小调整:首先,malloc 需要调整用户请求的大小,以适应内部数据结构(例如,可能需要存储额外的元数据)。通常,这包括对齐调整,确保分配的内存地址满足特定硬件要求(如对齐到8字节或16字节边界)。 2)空闲…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)

升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点&#xff0c;但无自动故障转移能力&#xff0c;Master宕机后需人工切换&#xff0c;期间消息可能无法读取。Slave仅存储数据&#xff0c;无法主动升级为Master响应请求&#xff…...

智能仓储的未来:自动化、AI与数据分析如何重塑物流中心

当仓库学会“思考”&#xff0c;物流的终极形态正在诞生 想象这样的场景&#xff1a; 凌晨3点&#xff0c;某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径&#xff1b;AI视觉系统在0.1秒内扫描包裹信息&#xff1b;数字孪生平台正模拟次日峰值流量压力…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

uniapp 开发ios, xcode 提交app store connect 和 testflight内测

uniapp 中配置 配置manifest 文档&#xff1a;manifest.json 应用配置 | uni-app官网 hbuilderx中本地打包 下载IOS最新SDK 开发环境 | uni小程序SDK hbulderx 版本号&#xff1a;4.66 对应的sdk版本 4.66 两者必须一致 本地打包的资源导入到SDK 导入资源 | uni小程序SDK …...

pikachu靶场通关笔记19 SQL注入02-字符型注入(GET)

目录 一、SQL注入 二、字符型SQL注入 三、字符型注入与数字型注入 四、源码分析 五、渗透实战 1、渗透准备 2、SQL注入探测 &#xff08;1&#xff09;输入单引号 &#xff08;2&#xff09;万能注入语句 3、获取回显列orderby 4、获取数据库名database 5、获取表名…...

SQL注入篇-sqlmap的配置和使用

在之前的皮卡丘靶场第五期SQL注入的内容中我们谈到了sqlmap&#xff0c;但是由于很多朋友看不了解命令行格式&#xff0c;所以是纯手动获取数据库信息的 接下来我们就用sqlmap来进行皮卡丘靶场的sql注入学习&#xff0c;链接&#xff1a;https://wwhc.lanzoue.com/ifJY32ybh6vc…...