当前位置: 首页 > news >正文

積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

K(x,y) 是定义在[a,b]\times[a,b]上的连续对称核函数,

非齐次第二类弗雷德霍姆积分算子方程的形式为:

\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

其中\varphi(x)是未知函数,f(x)是给定的连续函数,\lambda是参数。

2)def其特徵值是否一致收斂
定义:

对于由连续对称核K(x,y)生成的积分算子T

其特征值序列\{\lambda_n\}若满足对于任意的\epsilon>0

存在N\in\mathbb{N},使得当n,m > N时,对于所有x\in[a,b]

都有|\lambda_n - \lambda_m|<\epsilon,则称特征值序列\{\lambda_n\}一致收敛。

证明:

由希尔伯特 - 施密特定理,对于由连续对称核K(x,y)定义的积分算子T

存在由特征向量 \{\varphi_n\}构成的L^2[a,b]的标准正交基,

对应的特征值\{\lambda_n\}满足 \lim_{n\rightarrow\infty}\lambda_n = 0

T是紧自伴算子,其特征值\lambda_n满足|\lambda_1|\geq|\lambda_2|\geq\cdots

对于任意\epsilon > 0,因为\lim_{n\rightarrow\infty}\lambda_n = 0

存在N,使得当n > N时,|\lambda_n|<\frac{\epsilon}{2}

那么对于n,m > N,有 |\lambda_n-\lambda_m|\leq|\lambda_n| + |\lambda_m|<\frac{\epsilon}{2}+\frac{\epsilon}{2}=\epsilon

所以特征值序列\{\lambda_n\}一致收敛到 0。

其柯西判斷

柯西准则:对于序列\{\lambda_n\}

它收敛的充要条件是对于任意的\epsilon>0,存在N\in\mathbb{N}

使得当n,m > N时,|\lambda_n - \lambda_m|<\epsilon

在特征值序列的情况下,前面已证明其满足柯西准则,所以特征值序列收敛。

3)def具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程,要麼對所有連續函數f有解,要麼齊次方程有平凡解
证明思路:

设非齐次方程\varphi(x)=f(x)+\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

对应的齐次方程为\varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

由希尔伯特 - 施密特定理,积分算子T(T\varphi)(x)=\int_{a}^{b}K(x,y)\varphi(y)dy)是紧自伴算子,

存在标准正交基\{\varphi_n\}和特征值\{\lambda_n\}

假设齐次方程仅有平凡解,即对于\lambda不是特征值时,

齐次方程\varphi(x)-\lambda\int_{a}^{b}K(x,y)\varphi(y)dy = 0只有解\varphi(x)=0

对于非齐次方程,将\varphi(x)f(x)按特征向量展开:

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

其中a_n=\langle\varphi,\varphi_n\rangleb_n=\langle f,\varphi_n\rangle

代入非齐次方程可得:\sum_{n = 1}^{\infty}a_n\varphi_n(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)+\lambda\sum_{n = 1}^{\infty}a_n\lambda_n\varphi_n(x)

比较系数得a_n(1 - \lambda\lambda_n)=b_n

因为\lambda 不是特征值,1-\lambda\lambda_n\neq0,所以a_n=\frac{b_n}{1 - \lambda\lambda_n},从而非齐次方程有解。

反之,若齐次方程有非平凡解,

即存在非零解\varphi(x)使得 \varphi(x)=\lambda\int_{a}^{b}K(x,y)\varphi(y)dy

那么对于某些f(x),非齐次方程可能无解。

例如,若f(x)与齐次方程非平凡解的正交补空间不匹配时,非齐次方程无解。

4)计算例题

考虑积分方程\varphi(x)=x+\lambda\int_{0}^{1}(xy)\varphi(y)dy,这里 K(x,y)=xy是连续对称核,f(x)=x

\varphi(x)=\sum_{n = 1}^{\infty}a_n\varphi_n(x)f(x)=\sum_{n = 1}^{\infty}b_n\varphi_n(x)

先求积分算子 T(T\varphi)(x)=\int_{0}^{1}(xy)\varphi(y)dy)的特征值和特征向量。

\varphi(x)是特征函数,\lambda是特征值,则 \varphi(x)=\lambda\int_{0}^{1}(xy)\varphi(y)dy

\varphi(x)=Ax^m,代入得Ax^m=\lambda A\int_{0}^{1}y^{m + 1}dyx=\lambda A\frac{1}{m + 2}x

所以m = 1\varphi(x)=AxA=\lambda A\frac{1}{3},解得特征值\lambda_1 = 3,特征向量 \varphi_1(x)=x

\varphi(x)=a_1xf(x)=x代入原非齐次方程:

a_1x=x+\lambda a_1\int_{0}^{1}(xy)ydy

计算 \int_{0}^{1}(xy)ydy=\frac{1}{3}x,则 a_1x=x+\frac{1}{3}\lambda a_1x

整理得a_1(1-\frac{1}{3}\lambda)=1

\lambda\neq3 时,a_1=\frac{1}{1-\frac{1}{3}\lambda}

所以\varphi(x)=\frac{1}{1 - \frac{1}{3}\lambda}x是方程的解。

\lambda = 3 时,齐次方程\varphi(x)=3\int_{0}^{1}(xy)\varphi(y)dy有非平凡解\varphi(x)=x

此时原非齐次方程对于 f(x)=x无解(因为代入后会出现矛盾)。

相关文章:

積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程

1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程 设 是定义在上的连续对称核函数&#xff0c; 非齐次第二类弗雷德霍姆积分算子方程的形式为&#xff1a; &#xff0c; 其中是未知函数&#xff0c;是给定的连续函数&#xff0c;是参数。 2)def其特徵值是否一致…...

长理算法复习

选择排序 #include<iostream>using namespace std;const int N 1010; int a[N]; int n;void selectSort(){for (int i 0; i < n;i){int pos i;for (int j i 1; j < n;j){if(a[j]<a[pos])pos j;}swap(a[i], a[pos]);} }int main() {cin >> n;for (i…...

机器学习-K近邻算法

文章目录 一. 数据集介绍Iris plants dataset 二. 代码三. k值的选择 一. 数据集介绍 鸢尾花数据集 鸢尾花Iris Dataset数据集是机器学习领域经典数据集&#xff0c;鸢尾花数据集包含了150条鸢尾花信息&#xff0c;每50条取自三个鸢尾花中之一&#xff1a;Versicolour、Setosa…...

使用rsync+inotify简单实现文件实时双机双向同步

使用rsyncinotify简单实现文件实时双机双向同步 实现思路 使用inotify-tools的inotifywait工具监控文件变化&#xff0c;触发后使用rsync做同步。加入系统服务项&#xff0c;实现实时监听&#xff0c;方便管理。 以下配置操作&#xff0c;单向同步&#xff0c;只需在单边部…...

Ubuntu 24.04 LTS开机自启动脚本设置方法

目录 Ubuntu中设置开机自启动脚本步骤1&#xff1a;修改 rc-local.service文件步骤2&#xff1a;创建/etc/rc.local文件步骤3&#xff1a;修改/etc/rc.local的权限步骤4&#xff1a;启动rc-local.service步骤5&#xff1a;查看rc-local.service的服务状态 Ubuntu中设置开机自启…...

谈谈对JavaScript 中的事件冒泡(Event Bubbling)和事件捕获(Event Capturing)的理解

JavaScript 中的事件冒泡&#xff08;Event Bubbling&#xff09;和事件捕获&#xff08;Event Capturing&#xff09;&#xff0c;是浏览器在处理事件时采用的两种机制&#xff0c;它们在事件的传播顺序上有显著区别。这两种机制帮助开发者在事件触发时&#xff0c;能够以不同…...

解读2025年生物医药创新技术:展览会与论坛的重要性

2025生物医药创新技术与应用发展展览会暨论坛&#xff0c;由天津市生物医药行业协会、BIO CHINA生物发酵展组委会携手主办&#xff0c;山东信世会展服务有限公司承办&#xff0c;定于2025年3月3日至5日在济南黄河国际会展中心盛大开幕。展会规模60000平方米、800参展商、35场会…...

【第七天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-一种常见的分治算法(持续更新)

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的分治算法2. 分治算法3.详细的分治代码1&#xff09;一种常见的分治算法 总结 前言 提示&#xff1a;这…...

Spring Data JPA 实战:构建高性能数据访问层

1 简介 1.1 Spring Data JPA 概述 1.1.1 什么是 Spring Data JPA? Spring Data JPA 是 Spring Data 项目的一部分,旨在简化对基于 JPA 的数据库访问操作。它通过提供一致的编程模型和接口,使得开发者可以更轻松地与关系型数据库进行交互,同时减少了样板代码的编写。Spri…...

Python JSON:深入解析与高效应用

Python JSON:深入解析与高效应用 引言 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。Python 作为一种广泛使用的编程语言,对 JSON 的支持非常友好。本文将深入探讨 Python 中 JSON 的处理方法,包括基本操…...

【C语言进阶(四)】指针进阶详解(上)

指针进阶 1. 前言 2. 字符指针 2.1 常量字符串</br>2.2 常量字符串存储的位置</br> 3. 数组指针3.1 数组指针的使用</br> 4. 指针数组 4.1 拓展</br> 5. 数组传参与指针作为参数 5.1 一维数组传参</br> 5.2 二维数组传参</br> 5.3 一级指…...

DDD架构实战第五讲总结:将领域模型转化为代码

云架构师系列课程之DDD架构实战第五讲总结:将领域模型转化为代码 一、引言 在前几讲中,我们讨论了领域模型的重要性及其在业务分析中的渐进获得方法。本讲将聚焦于如何将领域模型转化为代码,使得开发人员能够更轻松地实现用户的领域模型。 二、从模型到代码:领域驱动设计…...

FPGA实现任意角度视频旋转(完结)视频任意角度旋转实现

本文主要介绍如何基于FPGA实现视频的任意角度旋转&#xff0c;关于视频180度实时旋转、90/270度视频无裁剪旋转&#xff0c;请见本专栏前面的文章&#xff0c;旋转效果示意图如下&#xff1a; 为了实时对比旋转效果&#xff0c;采用分屏显示进行处理&#xff0c;左边代表旋转…...

CPU 缓存基础知识

并发编程首先需要简单了解下现代CPU相关知识。通过一些简单的图&#xff0c;简单的代码&#xff0c;来认识CPU以及一些常见的问题。 目录 CPU存储与缓存的引入常见的三级缓存结构缓存一致性协议MESI协议缓存行 cache line 通过代码实例认识缓存行的重要性 CPU指令的乱序执行通过…...

微信小程序date picker的一些说明

微信小程序的picker是一个功能强大的组件&#xff0c;它可以是一个普通选择器&#xff0c;也可以是多项选择器&#xff0c;也可以是时间、日期、省市区选择器。 官方文档在这里 这里讲一下date picker的用法。 <view class"section"><view class"se…...

Vue3 + TS 实现批量拖拽 文件夹和文件 组件封装

一、html 代码&#xff1a; 代码中的表格引入了 vxe-table 插件 <Tag /> 是自己封装的说明组件 表格列表这块我使用了插槽来增加扩展性&#xff0c;可根据自己需求&#xff0c;在组件外部做调整 <template><div class"dragUpload"><el-dial…...

【Kubernetes】Pod生命周期、初始化容器、主容器

一、Pod生命周期 Pod从创建到终止退出的时间范围称为Pod生命周期。 1、生命周期重要流程 创建基础容器&#xff08;pause container&#xff09;初始化容器&#xff08;init-X Containers&#xff09;主容器&#xff08;container&#xff09;启动后的钩子(post-start)启动探…...

2025牛客寒假训练营1-M题

登录—专业IT笔试面试备考平台_牛客网 题目是翻倍一个连续子区间内的所有元素,求最大值和最小值的最小差。 那么最先的思路肯定是从最小值开始翻倍,然后是次小值,因为如果不翻倍最小值所在区间,那么次小值即使翻倍了只可能增大最大值,而不可能增大最小值。 因为区间是连续的,我…...

css3 svg制作404页面动画效果HTML源码

源码介绍 css3 svg制作404页面动画效果HTML源码&#xff0c;源码由HTMLCSSJS组成&#xff0c;记事本打开源码文件可以进行内容文字之类的修改&#xff0c;双击html文件可以本地运行效果 效果预览 源码如下 <!doctype html> <html> <head> <meta charse…...

序列标注:从传统到现代,NLP中的标签预测技术全解析

引言 序列标注任务是自然语言处理&#xff08;NLP&#xff09;中的核心任务之一&#xff0c;广泛应用于信息抽取、文本分类、机器翻译等领域。随着深度学习技术的快速发展&#xff0c;序列标注任务的性能得到了显著提升。本文将从基础概念入手&#xff0c;逐步深入探讨序列标注…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例

使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件&#xff0c;常用于在两个集合之间进行数据转移&#xff0c;如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model&#xff1a;绑定右侧列表的值&…...

Web 架构之 CDN 加速原理与落地实践

文章目录 一、思维导图二、正文内容&#xff08;一&#xff09;CDN 基础概念1. 定义2. 组成部分 &#xff08;二&#xff09;CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 &#xff08;三&#xff09;CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 &#xf…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

【Linux】自动化构建-Make/Makefile

前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具&#xff1a;make/makfile 1.背景 在一个工程中源文件不计其数&#xff0c;其按类型、功能、模块分别放在若干个目录中&#xff0c;mak…...

uniapp 小程序 学习(一)

利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 &#xff1a;开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置&#xff0c;将微信开发者工具放入到Hbuilder中&#xff0c; 打开后出现 如下 bug 解…...

stm32wle5 lpuart DMA数据不接收

配置波特率9600时&#xff0c;需要使用外部低速晶振...

第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)

第一篇&#xff1a;Liunx环境下搭建PaddlePaddle 3.0基础环境&#xff08;Liunx Centos8.5安装Python3.10pip3.10&#xff09; 一&#xff1a;前言二&#xff1a;安装编译依赖二&#xff1a;安装Python3.10三&#xff1a;安装PIP3.10四&#xff1a;安装Paddlepaddle基础框架4.1…...