積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程
1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程
设 是定义在
上的连续对称核函数,
非齐次第二类弗雷德霍姆积分算子方程的形式为:
,
其中是未知函数,
是给定的连续函数,
是参数。
2)def其特徵值是否一致收斂
定义:
对于由连续对称核生成的积分算子
,
其特征值序列若满足对于任意的
,
存在,使得当
时,对于所有
,
都有,则称特征值序列
一致收敛。
证明:
由希尔伯特 - 施密特定理,对于由连续对称核定义的积分算子
,
存在由特征向量 构成的
的标准正交基,
对应的特征值满足
。
设是紧自伴算子,其特征值
满足
。
对于任意,因为
,
存在,使得当
时,
。
那么对于,有
。
所以特征值序列一致收敛到 0。
其柯西判斷
柯西准则:对于序列,
它收敛的充要条件是对于任意的,存在
,
使得当时,
。
在特征值序列的情况下,前面已证明其满足柯西准则,所以特征值序列收敛。
3)def具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程,要麼對所有連續函數f有解,要麼齊次方程有平凡解
证明思路:
设非齐次方程,
对应的齐次方程为。
由希尔伯特 - 施密特定理,积分算子(
)是紧自伴算子,
存在标准正交基和特征值
。
假设齐次方程仅有平凡解,即对于不是特征值时,
齐次方程只有解
。
对于非齐次方程,将 和
按特征向量展开:
,
,
其中,
。
代入非齐次方程可得:。
比较系数得。
因为 不是特征值,
,所以
,从而非齐次方程有解。
反之,若齐次方程有非平凡解,
即存在非零解使得
,
那么对于某些,非齐次方程可能无解。
例如,若与齐次方程非平凡解的正交补空间不匹配时,非齐次方程无解。
4)计算例题
考虑积分方程,这里
是连续对称核,
。
设,
。
先求积分算子 (
)的特征值和特征向量。
设是特征函数,
是特征值,则
。
设,代入得
。
所以,
,
,解得特征值
,特征向量
。
将,
代入原非齐次方程:
。
计算 ,则
。
整理得,
当 时,
,
所以是方程的解。
当 时,齐次方程
有非平凡解
,
此时原非齐次方程对于 无解(因为代入后会出现矛盾)。
相关文章:
積分方程與簡單的泛函分析8.具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程
1)def求解具連續對稱核的非齊次第II類弗雷德霍姆積分算子方程 设 是定义在上的连续对称核函数, 非齐次第二类弗雷德霍姆积分算子方程的形式为: , 其中是未知函数,是给定的连续函数,是参数。 2)def其特徵值是否一致…...
长理算法复习
选择排序 #include<iostream>using namespace std;const int N 1010; int a[N]; int n;void selectSort(){for (int i 0; i < n;i){int pos i;for (int j i 1; j < n;j){if(a[j]<a[pos])pos j;}swap(a[i], a[pos]);} }int main() {cin >> n;for (i…...
机器学习-K近邻算法
文章目录 一. 数据集介绍Iris plants dataset 二. 代码三. k值的选择 一. 数据集介绍 鸢尾花数据集 鸢尾花Iris Dataset数据集是机器学习领域经典数据集,鸢尾花数据集包含了150条鸢尾花信息,每50条取自三个鸢尾花中之一:Versicolour、Setosa…...
使用rsync+inotify简单实现文件实时双机双向同步
使用rsyncinotify简单实现文件实时双机双向同步 实现思路 使用inotify-tools的inotifywait工具监控文件变化,触发后使用rsync做同步。加入系统服务项,实现实时监听,方便管理。 以下配置操作,单向同步,只需在单边部…...
Ubuntu 24.04 LTS开机自启动脚本设置方法
目录 Ubuntu中设置开机自启动脚本步骤1:修改 rc-local.service文件步骤2:创建/etc/rc.local文件步骤3:修改/etc/rc.local的权限步骤4:启动rc-local.service步骤5:查看rc-local.service的服务状态 Ubuntu中设置开机自启…...
谈谈对JavaScript 中的事件冒泡(Event Bubbling)和事件捕获(Event Capturing)的理解
JavaScript 中的事件冒泡(Event Bubbling)和事件捕获(Event Capturing),是浏览器在处理事件时采用的两种机制,它们在事件的传播顺序上有显著区别。这两种机制帮助开发者在事件触发时,能够以不同…...
解读2025年生物医药创新技术:展览会与论坛的重要性
2025生物医药创新技术与应用发展展览会暨论坛,由天津市生物医药行业协会、BIO CHINA生物发酵展组委会携手主办,山东信世会展服务有限公司承办,定于2025年3月3日至5日在济南黄河国际会展中心盛大开幕。展会规模60000平方米、800参展商、35场会…...
【第七天】零基础入门刷题Python-算法篇-数据结构与算法的介绍-一种常见的分治算法(持续更新)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言一、Python数据结构与算法的详细介绍1.Python中的常用的分治算法2. 分治算法3.详细的分治代码1)一种常见的分治算法 总结 前言 提示:这…...
Spring Data JPA 实战:构建高性能数据访问层
1 简介 1.1 Spring Data JPA 概述 1.1.1 什么是 Spring Data JPA? Spring Data JPA 是 Spring Data 项目的一部分,旨在简化对基于 JPA 的数据库访问操作。它通过提供一致的编程模型和接口,使得开发者可以更轻松地与关系型数据库进行交互,同时减少了样板代码的编写。Spri…...
Python JSON:深入解析与高效应用
Python JSON:深入解析与高效应用 引言 JSON(JavaScript Object Notation)是一种轻量级的数据交换格式,易于人阅读和编写,同时也易于机器解析和生成。Python 作为一种广泛使用的编程语言,对 JSON 的支持非常友好。本文将深入探讨 Python 中 JSON 的处理方法,包括基本操…...
【C语言进阶(四)】指针进阶详解(上)
指针进阶 1. 前言 2. 字符指针 2.1 常量字符串</br>2.2 常量字符串存储的位置</br> 3. 数组指针3.1 数组指针的使用</br> 4. 指针数组 4.1 拓展</br> 5. 数组传参与指针作为参数 5.1 一维数组传参</br> 5.2 二维数组传参</br> 5.3 一级指…...
DDD架构实战第五讲总结:将领域模型转化为代码
云架构师系列课程之DDD架构实战第五讲总结:将领域模型转化为代码 一、引言 在前几讲中,我们讨论了领域模型的重要性及其在业务分析中的渐进获得方法。本讲将聚焦于如何将领域模型转化为代码,使得开发人员能够更轻松地实现用户的领域模型。 二、从模型到代码:领域驱动设计…...
FPGA实现任意角度视频旋转(完结)视频任意角度旋转实现
本文主要介绍如何基于FPGA实现视频的任意角度旋转,关于视频180度实时旋转、90/270度视频无裁剪旋转,请见本专栏前面的文章,旋转效果示意图如下: 为了实时对比旋转效果,采用分屏显示进行处理,左边代表旋转…...
CPU 缓存基础知识
并发编程首先需要简单了解下现代CPU相关知识。通过一些简单的图,简单的代码,来认识CPU以及一些常见的问题。 目录 CPU存储与缓存的引入常见的三级缓存结构缓存一致性协议MESI协议缓存行 cache line 通过代码实例认识缓存行的重要性 CPU指令的乱序执行通过…...
微信小程序date picker的一些说明
微信小程序的picker是一个功能强大的组件,它可以是一个普通选择器,也可以是多项选择器,也可以是时间、日期、省市区选择器。 官方文档在这里 这里讲一下date picker的用法。 <view class"section"><view class"se…...
Vue3 + TS 实现批量拖拽 文件夹和文件 组件封装
一、html 代码: 代码中的表格引入了 vxe-table 插件 <Tag /> 是自己封装的说明组件 表格列表这块我使用了插槽来增加扩展性,可根据自己需求,在组件外部做调整 <template><div class"dragUpload"><el-dial…...
【Kubernetes】Pod生命周期、初始化容器、主容器
一、Pod生命周期 Pod从创建到终止退出的时间范围称为Pod生命周期。 1、生命周期重要流程 创建基础容器(pause container)初始化容器(init-X Containers)主容器(container)启动后的钩子(post-start)启动探…...
2025牛客寒假训练营1-M题
登录—专业IT笔试面试备考平台_牛客网 题目是翻倍一个连续子区间内的所有元素,求最大值和最小值的最小差。 那么最先的思路肯定是从最小值开始翻倍,然后是次小值,因为如果不翻倍最小值所在区间,那么次小值即使翻倍了只可能增大最大值,而不可能增大最小值。 因为区间是连续的,我…...
css3 svg制作404页面动画效果HTML源码
源码介绍 css3 svg制作404页面动画效果HTML源码,源码由HTMLCSSJS组成,记事本打开源码文件可以进行内容文字之类的修改,双击html文件可以本地运行效果 效果预览 源码如下 <!doctype html> <html> <head> <meta charse…...
序列标注:从传统到现代,NLP中的标签预测技术全解析
引言 序列标注任务是自然语言处理(NLP)中的核心任务之一,广泛应用于信息抽取、文本分类、机器翻译等领域。随着深度学习技术的快速发展,序列标注任务的性能得到了显著提升。本文将从基础概念入手,逐步深入探讨序列标注…...
Cursor实现用excel数据填充word模版的方法
cursor主页:https://www.cursor.com/ 任务目标:把excel格式的数据里的单元格,按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例,…...
超短脉冲激光自聚焦效应
前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应,这是一种非线性光学现象,主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场,对材料产生非线性响应,可能…...
Vue3 + Element Plus + TypeScript中el-transfer穿梭框组件使用详解及示例
使用详解 Element Plus 的 el-transfer 组件是一个强大的穿梭框组件,常用于在两个集合之间进行数据转移,如权限分配、数据选择等场景。下面我将详细介绍其用法并提供一个完整示例。 核心特性与用法 基本属性 v-model:绑定右侧列表的值&…...
Web 架构之 CDN 加速原理与落地实践
文章目录 一、思维导图二、正文内容(一)CDN 基础概念1. 定义2. 组成部分 (二)CDN 加速原理1. 请求路由2. 内容缓存3. 内容更新 (三)CDN 落地实践1. 选择 CDN 服务商2. 配置 CDN3. 集成到 Web 架构 …...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
搭建DNS域名解析服务器(正向解析资源文件)
正向解析资源文件 1)准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2)服务端安装软件:bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...
【Linux】自动化构建-Make/Makefile
前言 上文我们讲到了Linux中的编译器gcc/g 【Linux】编译器gcc/g及其库的详细介绍-CSDN博客 本来我们将一个对于编译来说很重要的工具:make/makfile 1.背景 在一个工程中源文件不计其数,其按类型、功能、模块分别放在若干个目录中,mak…...
uniapp 小程序 学习(一)
利用Hbuilder 创建项目 运行到内置浏览器看效果 下载微信小程序 安装到Hbuilder 下载地址 :开发者工具默认安装 设置服务端口号 在Hbuilder中设置微信小程序 配置 找到运行设置,将微信开发者工具放入到Hbuilder中, 打开后出现 如下 bug 解…...
stm32wle5 lpuart DMA数据不接收
配置波特率9600时,需要使用外部低速晶振...
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10+pip3.10)
第一篇:Liunx环境下搭建PaddlePaddle 3.0基础环境(Liunx Centos8.5安装Python3.10pip3.10) 一:前言二:安装编译依赖二:安装Python3.10三:安装PIP3.10四:安装Paddlepaddle基础框架4.1…...
