当前位置: 首页 > news >正文

DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?

DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?

  • 1. Impressive Points
  • 2. 纯强化学习,LLM推理能力提升新范式?
    • 2.1 DeepSeek-R1-Zero
    • 2.2 DeepSeek-R1
  • 3. 端侧模型能力提升:蒸馏>强化学习

1. Impressive Points

  1. LLM模型推理能力提升
    1. 在LLM模型post-training中,仅使用强化学习(reinforcement learning,RL) 提升模型推理能力,不再依赖有监督微调训练(supervised fine-tuning,SFT)。
    2. 证明了LLM模型具有自行探索长思维链(chain-of-thought,COT) 的能力。
  2. 端侧模型(小模型)推理能力提升
    1. 相对于使用RL进行训练,基于大模型进行蒸馏(Distillation)的方式,是提升端侧模型推理能力更有效的途径。

2. 纯强化学习,LLM推理能力提升新范式?

2.1 DeepSeek-R1-Zero

核心问题: 当前的post-training流程对于大量监督数据的依赖,监督数据的收集非常耗时:

  1. 当前模型推理性能的提升,需要大量监督数据进行SFT,以作为模型post-training的冷启动。
  2. 当前一些研究已经验证了强化学习在模型推理性能上的有效性,但也依赖监督数据。

解决方案: 探索在没有任何监督数据的情况下,提升LLM模型的推理能力:

  1. 为了节省RL的训练成本,采用群体相对策略优化(GRPO),这个这里就不再多说了,后面专门出一篇文章讲一下GRPO。
  2. 在RL训练过程中,采用Rule-based奖励,主要由两种奖励构成:
    1. Accuracy rewards:评估模型的输出是否正确。
    2. Format rewards:强制模型将其思考过程置于指定标签之间。
  3. 设计训练模版,指导基模型在训练过程中遵守设定的指令:

成果:

  1. 推出DeepSeek-R1-Zero模型,无需任何监督微调数据,仅通过RL进行模型的post-training,在AIME2024、MATH-500等多个Benchmark中达到并且超过OpenAI-o1-0912的水平。

  1. DeepSeek-R1-Zero展示出了自我进化(self-evolution) 能力,在没有监督数据的情况下,随着强化学习训练进程的深入,模型的思考时间在增加,并自发出现了诸如reflectio(反射,模型重新审视和重新评估其先前步骤)以及探索解决问题的替代方法等更加复杂的行为:

  1. 在DeepSeek-R1-Zero的训练过程中出现了Aha Moment(顿悟时刻),代表RL有可能在人工系统中解锁新的智能水平,为未来更加自主和自适应的模型铺平道路。

2.2 DeepSeek-R1

核心问题:

  1. 相对于完全不使用有监督数据,使用少量高质量数据作为冷启动,是否可以进一步提高推理性能或加速收敛?
  2. 针对DeepSeek-R1-Zero存在的输出内容可读性差的问题进行优化。

解决方案:

  1. 冷启动数据: 使用下述方法构建少量的(约几千条)长COT数据,作为冷启动数据对DeepSeek-V3-Base进行微调:
    1. 以few-shot的长COT prompt作为例子,让DeepSeek-R1-Zero通过反射和验证生成详细的答案;
    2. 将DeepSeek-R1-Zero的结果进行格式化;
    3. 让人工标注人员进行后处理。
  2. Reasoning-oriented Reinforcement Learning: 完成冷启动数据微调后,采用与DeepSeek-R1-Zero一致的强化学习训练过程,同时针对DeepSeek-R1-Zero存在的语言混合,导致模型输出可读性差的问题,在RL训练期间引入语言一致性奖励(目标语言单词在 CoT 中的比例),将推理任务的准确性和语言一致性的奖励结合起来,直接相加作为最终的奖励。
  3. Rejection Sampling and Supervised Fine-Tuning: 当2中的RL过程趋于收敛时,利用checkpoint生产用于下一轮训练的SFT数据。与1中的冷启动数据区别在于,冷启动数据针对推理能力提升,此阶段既包含用于推理能力提升的600k数据,也包含200k推理无关的数据。使用上述约800k样本的精选数据集继续对DeepSeek-V3-Base进行了两个epoch的微调。
  4. Reinforcement Learning for all Scenarios: 为了进一步对齐模型和人类偏好,设计了二级强化学习阶段以同时提高模型的helpfulness(有用性)harmlessness(无害性)
    1. helpfulness(有用性):只评估模型最终的结果,而不关注模型的推理过程
    2. harmlessness(无害性):既评估模型最终的结果,也评估模型的推理过程。

3. 端侧模型能力提升:蒸馏>强化学习

基于DeekSeek-R1,文中仅使用SFT对小模型(Qwen、Llama等)进行蒸馏训练得到的模型,性能全面优于GPT-4o-0513等大参数量非推理模型:

同时,直接对小模型进行DeepSeek-R1-Zero同款的强化学习,得到的DeepSeek-R1-Zero-Qwen-32B模型性能弱于蒸馏模型

Tips:文中提到将RL应用于蒸馏模型会产生显著的进一步收益,应用方法文中没有详细说明,留给学术界去进一步探索。

相关文章:

DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?

DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式? 1. Impressive Points2. 纯强化学习,LLM推理能力提升新范式?2.1 DeepSeek-R1-Zero2.2 DeepSeek-R1 3. 端侧模型能力提升:蒸馏>强化学习 1. Impre…...

深度解析:基于Vue 3的教育管理系统架构设计与优化实践

一、项目架构分析 1. 技术栈全景 项目采用 Vue 3 TypeScript Tailwind CSS 技术组合,体现了现代前端开发的三大趋势: 响应式编程:通过Vue 3的Composition API实现细粒度响应 类型安全:约60%的组件采用TypeScript编写 原子化…...

【PyTorch】3.张量类型转换

个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch&#xff0…...

Spring Boot整合JavaMail实现邮件发送

一. 发送邮件原理 发件人【设置授权码】 - SMTP协议【Simple Mail TransferProtocol - 是一种提供可靠且有效的电子邮件传输的协议】 - 收件人 二. 获取授权码 开通POP3/SMTP,获取授权码 授权码是QQ邮箱推出的,用于登录第三方客户端的专用密码。适用…...

字节跳动发布UI-TARS,超越GPT-4o和Claude,能接管电脑完成复杂任务

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

数据的秘密:如何用大数据分析挖掘商业价值

数据的秘密:如何用大数据分析挖掘商业价值 在这个数据爆炸的时代,我们每天都在产生、存储和处理着海量的数据。然而,仅仅拥有数据并不等于拥有价值。就像拥有一座金矿,不开采和提炼,最终只是一堆毫无用处的石头。如何…...

OAuth1和OAuth2授权协议

OAuth 1 授权协议 1. 概述 OAuth1 是 OAuth 标准的第一个正式版本,它通过 签名和令牌 的方式,实现用户授权第三方访问其资源的功能。在 OAuth1 中,安全性依赖于签名机制,无需传递用户密码。 2. 核心特性 使用 签名&#xff08…...

AI学习(vscode+deepseek+cline)

1、网页生成不成功时,直接根据提示让模型替你解决问题 2、http://localhost:3000 拒绝链接时,cmd输入命令InetMgr,网站右键新建-配置你的网页代码物理地址,这里我还输入本机登录名及密码了,并把端口地址由默认80修改为…...

04-机器学习-网页数据抓取

网络爬取(Web Scraping)深度指南 1. 网络爬取全流程设计 一个完整的网络爬取项目通常包含以下步骤: 目标分析: 明确需求:需要哪些数据(如商品价格、评论、图片)?网站结构分析&…...

计网week1+2

计网 一.概念 1.什么是Internet 节点:主机及其运行的应用程序、路由器、交换机 边:通信链路,接入网链路主机连接到互联网的链路,光纤、网输电缆 协议:对等层的实体之间通信要遵守的标准,规定了语法、语义…...

重定向与缓冲区

4种重定向 我们有如下的代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h>#define FILE_NAME "log.txt"int main() {close(1)…...

练习题 - Django 4.x File 文件上传使用示例和配置方法

在现代的 web 应用开发中,文件上传是一个常见的功能,无论是用户上传头像、上传文档,还是其他类型的文件,处理文件上传都是开发者必须掌握的技能之一。Django 作为一个流行的 Python web 框架,提供了便捷的文件上传功能和配置方法。学习如何在 Django 中实现文件上传,不仅…...

[VSCode] vscode下载安装及安装中文插件详解(附下载链接)

VSCode 是一款由微软开发且跨平台的免费源代码编辑器&#xff1b;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能&#xff0c;并且内置了命令行工具和Git版本控制系统。 下载链接&#xff1a;https://pan.quark.cn/s/3a90aef4b645 提取码&#xff1a;NFy5 通过上面…...

JVM常见知识点

在《深入理解Java虚拟机》一书中&#xff0c;介绍了JVM的相关特性。 1、JVM的内存区域划分 在真实的操作系统中&#xff0c;对于地址空间进行了分区域的设计&#xff0c;由于JVM是仿照真实的机器进行设计的&#xff0c;那么也进行了分区域的设计。核心区域有四个&#xff0c;…...

深入探索 Vue 3 Markdown 编辑器:高级功能与实现

目录 1. 为什么选择 Markdown 编辑器&#xff1f;2. 选择合适的 Markdown 编辑器3. 安装与基本配置安装 配置 Markdown 编辑器代码说明 4. 高级功能实现4.1 实时预览与双向绑定4.2 插入图片和图像上传安装图像上传插件配置图像上传插件 4.3 数学公式支持安装 KaTeX配置 KaTeX 插…...

vscode无法格式化go代码的问题

CTRLshiftp 点击Go:Install/Update Tools 点击全选&#xff0c;OK&#xff01;...

《Java程序设计》课程考核试卷

一、单项选择题&#xff08;本大题共10个小题&#xff0c;每小题2分&#xff0c;共20分&#xff09; 1.下列用来编译Java源文件为字节码文件的工具是&#xff08; &#xff09;。 A.java B.javadoc C.jar D.javac 2…...

one-hot (独热编码)

一、目的 假设我们现在需要对猫、 狗、 人这三个类别进行分类。 若以 0 代表猫&#xff0c; 以 1 代表狗&#xff0c; 以 2 代表人&#xff0c;会发现那么猫和狗之间距离为 1&#xff0c; 狗和人之间距离为 1&#xff0c; 而猫和人之间距离为 2。 假设真实标签是猫&#xff0…...

寒假1.23

题解 web&#xff1a;[极客大挑战 2019]Secret File&#xff08;文件包含漏洞&#xff09; 打开链接是一个普通的文字界面 查看一下源代码 发现一个链接&#xff0c;点进去看看 再点一次看看&#xff0c;没什么用 仔细看&#xff0c;有一个问题&#xff0c;当点击./action.ph…...

unity 粒子系统设置触发

1、勾选Triggers选项 2、将作为触发器的物体拉入队列当中&#xff0c;物体上必须挂载collider 3、将想要触发的方式&#xff08;Inide、Outside、Enter和Exit&#xff09;选择为”Callback“&#xff0c;其他默认为”Ignore“ 4、Collider Query Mode 设置为All&#xff1a…...

国防科技大学计算机基础课程笔记02信息编码

1.机内码和国标码 国标码就是我们非常熟悉的这个GB2312,但是因为都是16进制&#xff0c;因此这个了16进制的数据既可以翻译成为这个机器码&#xff0c;也可以翻译成为这个国标码&#xff0c;所以这个时候很容易会出现这个歧义的情况&#xff1b; 因此&#xff0c;我们的这个国…...

web vue 项目 Docker化部署

Web 项目 Docker 化部署详细教程 目录 Web 项目 Docker 化部署概述Dockerfile 详解 构建阶段生产阶段 构建和运行 Docker 镜像 1. Web 项目 Docker 化部署概述 Docker 化部署的主要步骤分为以下几个阶段&#xff1a; 构建阶段&#xff08;Build Stage&#xff09;&#xff1a…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统

医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上&#xff0c;开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识&#xff0c;在 vs 2017 平台上&#xff0c;进行 ASP.NET 应用程序和简易网站的开发&#xff1b;初步熟悉开发一…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

java 实现excel文件转pdf | 无水印 | 无限制

文章目录 目录 文章目录 前言 1.项目远程仓库配置 2.pom文件引入相关依赖 3.代码破解 二、Excel转PDF 1.代码实现 2.Aspose.License.xml 授权文件 总结 前言 java处理excel转pdf一直没找到什么好用的免费jar包工具,自己手写的难度,恐怕高级程序员花费一年的事件,也…...

抖音增长新引擎:品融电商,一站式全案代运营领跑者

抖音增长新引擎&#xff1a;品融电商&#xff0c;一站式全案代运营领跑者 在抖音这个日活超7亿的流量汪洋中&#xff0c;品牌如何破浪前行&#xff1f;自建团队成本高、效果难控&#xff1b;碎片化运营又难成合力——这正是许多企业面临的增长困局。品融电商以「抖音全案代运营…...

MMaDA: Multimodal Large Diffusion Language Models

CODE &#xff1a; https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA&#xff0c;它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构&#xf…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日&#xff0c;国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解&#xff0c;“超级…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍

文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结&#xff1a; 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析&#xff1a; 实际业务去理解体会统一注…...