DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?
DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?
- 1. Impressive Points
- 2. 纯强化学习,LLM推理能力提升新范式?
- 2.1 DeepSeek-R1-Zero
- 2.2 DeepSeek-R1
- 3. 端侧模型能力提升:蒸馏>强化学习
1. Impressive Points
- LLM模型推理能力提升
- 在LLM模型post-training中,仅使用强化学习(reinforcement learning,RL) 提升模型推理能力,不再依赖有监督微调训练(supervised fine-tuning,SFT)。
- 证明了LLM模型具有自行探索长思维链(chain-of-thought,COT) 的能力。
- 端侧模型(小模型)推理能力提升
- 相对于使用RL进行训练,基于大模型进行蒸馏(Distillation)的方式,是提升端侧模型推理能力更有效的途径。
2. 纯强化学习,LLM推理能力提升新范式?
2.1 DeepSeek-R1-Zero
核心问题: 当前的post-training流程对于大量监督数据的依赖,监督数据的收集非常耗时:
- 当前模型推理性能的提升,需要大量监督数据进行SFT,以作为模型post-training的冷启动。
- 当前一些研究已经验证了强化学习在模型推理性能上的有效性,但也依赖监督数据。
解决方案: 探索在没有任何监督数据的情况下,提升LLM模型的推理能力:
- 为了节省RL的训练成本,采用群体相对策略优化(GRPO),这个这里就不再多说了,后面专门出一篇文章讲一下GRPO。
- 在RL训练过程中,采用Rule-based奖励,主要由两种奖励构成:
- Accuracy rewards:评估模型的输出是否正确。
- Format rewards:强制模型将其思考过程置于指定标签之间。
- 设计训练模版,指导基模型在训练过程中遵守设定的指令:

成果:
- 推出DeepSeek-R1-Zero模型,无需任何监督微调数据,仅通过RL进行模型的post-training,在AIME2024、MATH-500等多个Benchmark中达到并且超过OpenAI-o1-0912的水平。

- DeepSeek-R1-Zero展示出了自我进化(self-evolution) 能力,在没有监督数据的情况下,随着强化学习训练进程的深入,模型的思考时间在增加,并自发出现了诸如reflectio(反射,模型重新审视和重新评估其先前步骤)以及探索解决问题的替代方法等更加复杂的行为:

- 在DeepSeek-R1-Zero的训练过程中出现了Aha Moment(顿悟时刻),代表RL有可能在人工系统中解锁新的智能水平,为未来更加自主和自适应的模型铺平道路。

2.2 DeepSeek-R1
核心问题:
- 相对于完全不使用有监督数据,使用少量高质量数据作为冷启动,是否可以进一步提高推理性能或加速收敛?
- 针对DeepSeek-R1-Zero存在的输出内容可读性差的问题进行优化。
解决方案:
- 冷启动数据: 使用下述方法构建少量的(约几千条)长COT数据,作为冷启动数据对DeepSeek-V3-Base进行微调:
- 以few-shot的长COT prompt作为例子,让DeepSeek-R1-Zero通过反射和验证生成详细的答案;
- 将DeepSeek-R1-Zero的结果进行格式化;
- 让人工标注人员进行后处理。
- Reasoning-oriented Reinforcement Learning: 完成冷启动数据微调后,采用与DeepSeek-R1-Zero一致的强化学习训练过程,同时针对DeepSeek-R1-Zero存在的语言混合,导致模型输出可读性差的问题,在RL训练期间引入语言一致性奖励(目标语言单词在 CoT 中的比例),将推理任务的准确性和语言一致性的奖励结合起来,直接相加作为最终的奖励。
- Rejection Sampling and Supervised Fine-Tuning: 当2中的RL过程趋于收敛时,利用checkpoint生产用于下一轮训练的SFT数据。与1中的冷启动数据区别在于,冷启动数据针对推理能力提升,此阶段既包含用于推理能力提升的600k数据,也包含200k推理无关的数据。使用上述约800k样本的精选数据集继续对DeepSeek-V3-Base进行了两个epoch的微调。
- Reinforcement Learning for all Scenarios: 为了进一步对齐模型和人类偏好,设计了二级强化学习阶段以同时提高模型的helpfulness(有用性) 和harmlessness(无害性):
- helpfulness(有用性):只评估模型最终的结果,而不关注模型的推理过程。
- harmlessness(无害性):既评估模型最终的结果,也评估模型的推理过程。
3. 端侧模型能力提升:蒸馏>强化学习
基于DeekSeek-R1,文中仅使用SFT对小模型(Qwen、Llama等)进行蒸馏训练得到的模型,性能全面优于GPT-4o-0513等大参数量非推理模型:

同时,直接对小模型进行DeepSeek-R1-Zero同款的强化学习,得到的DeepSeek-R1-Zero-Qwen-32B模型性能弱于蒸馏模型:

Tips:文中提到将RL应用于蒸馏模型会产生显著的进一步收益,应用方法文中没有详细说明,留给学术界去进一步探索。
相关文章:
DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式?
DeepSeek-R1解读:纯强化学习,模型推理能力提升的新范式? 1. Impressive Points2. 纯强化学习,LLM推理能力提升新范式?2.1 DeepSeek-R1-Zero2.2 DeepSeek-R1 3. 端侧模型能力提升:蒸馏>强化学习 1. Impre…...
深度解析:基于Vue 3的教育管理系统架构设计与优化实践
一、项目架构分析 1. 技术栈全景 项目采用 Vue 3 TypeScript Tailwind CSS 技术组合,体现了现代前端开发的三大趋势: 响应式编程:通过Vue 3的Composition API实现细粒度响应 类型安全:约60%的组件采用TypeScript编写 原子化…...
【PyTorch】3.张量类型转换
个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch࿰…...
Spring Boot整合JavaMail实现邮件发送
一. 发送邮件原理 发件人【设置授权码】 - SMTP协议【Simple Mail TransferProtocol - 是一种提供可靠且有效的电子邮件传输的协议】 - 收件人 二. 获取授权码 开通POP3/SMTP,获取授权码 授权码是QQ邮箱推出的,用于登录第三方客户端的专用密码。适用…...
字节跳动发布UI-TARS,超越GPT-4o和Claude,能接管电脑完成复杂任务
每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...
数据的秘密:如何用大数据分析挖掘商业价值
数据的秘密:如何用大数据分析挖掘商业价值 在这个数据爆炸的时代,我们每天都在产生、存储和处理着海量的数据。然而,仅仅拥有数据并不等于拥有价值。就像拥有一座金矿,不开采和提炼,最终只是一堆毫无用处的石头。如何…...
OAuth1和OAuth2授权协议
OAuth 1 授权协议 1. 概述 OAuth1 是 OAuth 标准的第一个正式版本,它通过 签名和令牌 的方式,实现用户授权第三方访问其资源的功能。在 OAuth1 中,安全性依赖于签名机制,无需传递用户密码。 2. 核心特性 使用 签名(…...
AI学习(vscode+deepseek+cline)
1、网页生成不成功时,直接根据提示让模型替你解决问题 2、http://localhost:3000 拒绝链接时,cmd输入命令InetMgr,网站右键新建-配置你的网页代码物理地址,这里我还输入本机登录名及密码了,并把端口地址由默认80修改为…...
04-机器学习-网页数据抓取
网络爬取(Web Scraping)深度指南 1. 网络爬取全流程设计 一个完整的网络爬取项目通常包含以下步骤: 目标分析: 明确需求:需要哪些数据(如商品价格、评论、图片)?网站结构分析&…...
计网week1+2
计网 一.概念 1.什么是Internet 节点:主机及其运行的应用程序、路由器、交换机 边:通信链路,接入网链路主机连接到互联网的链路,光纤、网输电缆 协议:对等层的实体之间通信要遵守的标准,规定了语法、语义…...
重定向与缓冲区
4种重定向 我们有如下的代码: #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h>#define FILE_NAME "log.txt"int main() {close(1)…...
练习题 - Django 4.x File 文件上传使用示例和配置方法
在现代的 web 应用开发中,文件上传是一个常见的功能,无论是用户上传头像、上传文档,还是其他类型的文件,处理文件上传都是开发者必须掌握的技能之一。Django 作为一个流行的 Python web 框架,提供了便捷的文件上传功能和配置方法。学习如何在 Django 中实现文件上传,不仅…...
[VSCode] vscode下载安装及安装中文插件详解(附下载链接)
VSCode 是一款由微软开发且跨平台的免费源代码编辑器;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能,并且内置了命令行工具和Git版本控制系统。 下载链接:https://pan.quark.cn/s/3a90aef4b645 提取码:NFy5 通过上面…...
JVM常见知识点
在《深入理解Java虚拟机》一书中,介绍了JVM的相关特性。 1、JVM的内存区域划分 在真实的操作系统中,对于地址空间进行了分区域的设计,由于JVM是仿照真实的机器进行设计的,那么也进行了分区域的设计。核心区域有四个,…...
深入探索 Vue 3 Markdown 编辑器:高级功能与实现
目录 1. 为什么选择 Markdown 编辑器?2. 选择合适的 Markdown 编辑器3. 安装与基本配置安装 配置 Markdown 编辑器代码说明 4. 高级功能实现4.1 实时预览与双向绑定4.2 插入图片和图像上传安装图像上传插件配置图像上传插件 4.3 数学公式支持安装 KaTeX配置 KaTeX 插…...
vscode无法格式化go代码的问题
CTRLshiftp 点击Go:Install/Update Tools 点击全选,OK!...
《Java程序设计》课程考核试卷
一、单项选择题(本大题共10个小题,每小题2分,共20分) 1.下列用来编译Java源文件为字节码文件的工具是( )。 A.java B.javadoc C.jar D.javac 2…...
one-hot (独热编码)
一、目的 假设我们现在需要对猫、 狗、 人这三个类别进行分类。 若以 0 代表猫, 以 1 代表狗, 以 2 代表人,会发现那么猫和狗之间距离为 1, 狗和人之间距离为 1, 而猫和人之间距离为 2。 假设真实标签是猫࿰…...
寒假1.23
题解 web:[极客大挑战 2019]Secret File(文件包含漏洞) 打开链接是一个普通的文字界面 查看一下源代码 发现一个链接,点进去看看 再点一次看看,没什么用 仔细看,有一个问题,当点击./action.ph…...
unity 粒子系统设置触发
1、勾选Triggers选项 2、将作为触发器的物体拉入队列当中,物体上必须挂载collider 3、将想要触发的方式(Inide、Outside、Enter和Exit)选择为”Callback“,其他默认为”Ignore“ 4、Collider Query Mode 设置为All:…...
wordpress后台更新后 前端没变化的解决方法
使用siteground主机的wordpress网站,会出现更新了网站内容和修改了php模板文件、js文件、css文件、图片文件后,网站没有变化的情况。 不熟悉siteground主机的新手,遇到这个问题,就很抓狂,明明是哪都没操作错误&#x…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
学习STC51单片机32(芯片为STC89C52RCRC)OLED显示屏2
每日一言 今天的每一份坚持,都是在为未来积攒底气。 案例:OLED显示一个A 这边观察到一个点,怎么雪花了就是都是乱七八糟的占满了屏幕。。 解释 : 如果代码里信号切换太快(比如 SDA 刚变,SCL 立刻变&#…...
Device Mapper 机制
Device Mapper 机制详解 Device Mapper(简称 DM)是 Linux 内核中的一套通用块设备映射框架,为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程,并配以详细的…...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
比较数据迁移后MySQL数据库和OceanBase数据仓库中的表
设计一个MySQL数据库和OceanBase数据仓库的表数据比较的详细程序流程,两张表是相同的结构,都有整型主键id字段,需要每次从数据库分批取得2000条数据,用于比较,比较操作的同时可以再取2000条数据,等上一次比较完成之后,开始比较,直到比较完所有的数据。比较操作需要比较…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
华为OD最新机试真题-数组组成的最小数字-OD统一考试(B卷)
题目描述 给定一个整型数组,请从该数组中选择3个元素 组成最小数字并输出 (如果数组长度小于3,则选择数组中所有元素来组成最小数字)。 输入描述 行用半角逗号分割的字符串记录的整型数组,0<数组长度<= 100,0<整数的取值范围<= 10000。 输出描述 由3个元素组成…...
k8s从入门到放弃之HPA控制器
k8s从入门到放弃之HPA控制器 Kubernetes中的Horizontal Pod Autoscaler (HPA)控制器是一种用于自动扩展部署、副本集或复制控制器中Pod数量的机制。它可以根据观察到的CPU利用率(或其他自定义指标)来调整这些对象的规模,从而帮助应用程序在负…...
Axure 下拉框联动
实现选省、选完省之后选对应省份下的市区...
