当前位置: 首页 > news >正文

【PyTorch】3.张量类型转换

个人主页:Icomi

在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch,我们可以轻松搭建各类神经网络模型,实现从基础到高级的人工智能应用。接下来,就让我们一同走进 PyTorch 的世界,探索神经网络与人工智能的奥秘。本系列为PyTorch入门文章,若各位大佬想持续跟进,欢迎与我交流互关。

大家好我是一颗米,我们已经了解了张量在 PyTorch 中的核心地位,也知道了它在 CPU 和 GPU 上的运算方式,这些都是搭建我们深度学习知识大厦的重要基石。但这座大厦要盖得又高又稳,还需要更多的 “砖块”,接下来我们就来学习其中非常关键的一块 —— 张量的类型转换。

在实际的深度学习项目中,我们会从各种不同的数据源获取数据,这些数据可能最初是以不同的形式存在的。而我们之前学过,在 PyTorch 里计算数据基本都是以张量形式,所以就经常需要进行数据类型的转换。其中,将 numpy 数组和 PyTorch Tensor 相互转化,就是最常使用的一种操作,这也是大家必须掌握的知识点。

numpy 在 Python 的数据处理领域应用非常广泛,很多经典的数据集和算法库都与 numpy 紧密相关。当我们从这些地方获取数据后,往往就需要把 numpy 数组转化为 PyTorch Tensor,才能在 PyTorch 的深度学习模型中进行运算。反之,当我们在 PyTorch 模型中完成某些计算,需要使用一些 numpy 强大的数据分析和处理工具时,又得把 Tensor 转换回 numpy 数组。

这一节,我们主要就来学习如何在 numpy 数组和 PyTorch Tensor 之间自由 “穿梭”,掌握这一关键技能,为我们后续的深度学习扫除障碍。

1. 张量转换为 numpy 数组

使用 Tensor.numpy 函数可以将张量转换为 ndarray 数组,但是共享内存,可以使用 copy 函数避免共享。

# 1. 将张量转换为 numpy 数组
def tensor_to_numpy():# 创建一个 PyTorch 张量tensor = torch.tensor([2, 3, 4])# 使用张量对象中的 numpy 函数进行转换numpy_array = tensor.numpy()print(type(tensor))print(type(numpy_array))# 注意: tensor 和 numpy_array 共享内存# 修改其中的一个,另外一个也会发生改变# tensor[0] = 100numpy_array[0] = 100print(tensor)print(numpy_array)# 2. 对象拷贝避免共享内存
def tensor_to_numpy_with_copy():# 创建一个 PyTorch 张量tensor = torch.tensor([2, 3, 4])# 使用张量对象中的 numpy 函数进行转换,先克隆张量避免共享内存numpy_array = tensor.clone().numpy()print(type(tensor))print(type(numpy_array))# 修改 numpy 数组,不会影响原张量numpy_array[0] = 100print(tensor)print(numpy_array)if __name__ == "__main__":tensor_to_numpy()tensor_to_numpy_with_copy()

2. numpy 转换为张量

  1. 使用 from_numpy 可以将 ndarray 数组转换为 Tensor,默认共享内存,使用 copy 函数避免共享。
  2. 使用 torch.tensor 可以将 ndarray 数组转换为 Tensor,默认不共享内存。
# 1. 使用 from_numpy 函数
def test01():data_numpy = np.array([2, 3, 4])# 将 numpy 数组转换为张量类型# 1. from_numpy# 2. torch.tensor(ndarray)# 浅拷贝data_tensor = torch.from_numpy(data_numpy)# nunpy 和 tensor 共享内存# data_numpy[0] = 100data_tensor[0] = 100print(data_tensor)print(data_numpy)# 2. 使用 torch.tensor 函数
def test02():data_numpy = np.array([2, 3, 4])data_tensor = torch.tensor(data_numpy)# nunpy 和 tensor 不共享内存# data_numpy[0] = 100data_tensor[0] = 100print(data_tensor)print(data_numpy)

3. 标量张量和数字的转换

对于只有一个元素的张量,使用 item 方法将该值从张量中提取出来。

# 3. 标量张量和数字的转换
def test03():# 当张量只包含一个元素时, 可以通过 item 函数提取出该值data = torch.tensor([30,])print(data.item())data = torch.tensor(30)print(data.item())if __name__ == '__main__':test03()

4.总结

本节内容比较简单, 我们主要学习了 numpy 和 tensor 互相转换的规则, 以及标量张量与数值之间的转换规则。

相关文章:

【PyTorch】3.张量类型转换

个人主页:Icomi 在深度学习蓬勃发展的当下,PyTorch 是不可或缺的工具。它作为强大的深度学习框架,为构建和训练神经网络提供了高效且灵活的平台。神经网络作为人工智能的核心技术,能够处理复杂的数据模式。通过 PyTorch&#xff0…...

Spring Boot整合JavaMail实现邮件发送

一. 发送邮件原理 发件人【设置授权码】 - SMTP协议【Simple Mail TransferProtocol - 是一种提供可靠且有效的电子邮件传输的协议】 - 收件人 二. 获取授权码 开通POP3/SMTP,获取授权码 授权码是QQ邮箱推出的,用于登录第三方客户端的专用密码。适用…...

字节跳动发布UI-TARS,超越GPT-4o和Claude,能接管电脑完成复杂任务

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领…...

数据的秘密:如何用大数据分析挖掘商业价值

数据的秘密:如何用大数据分析挖掘商业价值 在这个数据爆炸的时代,我们每天都在产生、存储和处理着海量的数据。然而,仅仅拥有数据并不等于拥有价值。就像拥有一座金矿,不开采和提炼,最终只是一堆毫无用处的石头。如何…...

OAuth1和OAuth2授权协议

OAuth 1 授权协议 1. 概述 OAuth1 是 OAuth 标准的第一个正式版本,它通过 签名和令牌 的方式,实现用户授权第三方访问其资源的功能。在 OAuth1 中,安全性依赖于签名机制,无需传递用户密码。 2. 核心特性 使用 签名&#xff08…...

AI学习(vscode+deepseek+cline)

1、网页生成不成功时,直接根据提示让模型替你解决问题 2、http://localhost:3000 拒绝链接时,cmd输入命令InetMgr,网站右键新建-配置你的网页代码物理地址,这里我还输入本机登录名及密码了,并把端口地址由默认80修改为…...

04-机器学习-网页数据抓取

网络爬取(Web Scraping)深度指南 1. 网络爬取全流程设计 一个完整的网络爬取项目通常包含以下步骤: 目标分析: 明确需求:需要哪些数据(如商品价格、评论、图片)?网站结构分析&…...

计网week1+2

计网 一.概念 1.什么是Internet 节点:主机及其运行的应用程序、路由器、交换机 边:通信链路,接入网链路主机连接到互联网的链路,光纤、网输电缆 协议:对等层的实体之间通信要遵守的标准,规定了语法、语义…...

重定向与缓冲区

4种重定向 我们有如下的代码&#xff1a; #include <stdio.h> #include <sys/types.h> #include <sys/stat.h> #include <fcntl.h> #include <unistd.h> #include <string.h>#define FILE_NAME "log.txt"int main() {close(1)…...

练习题 - Django 4.x File 文件上传使用示例和配置方法

在现代的 web 应用开发中,文件上传是一个常见的功能,无论是用户上传头像、上传文档,还是其他类型的文件,处理文件上传都是开发者必须掌握的技能之一。Django 作为一个流行的 Python web 框架,提供了便捷的文件上传功能和配置方法。学习如何在 Django 中实现文件上传,不仅…...

[VSCode] vscode下载安装及安装中文插件详解(附下载链接)

VSCode 是一款由微软开发且跨平台的免费源代码编辑器&#xff1b;该软件支持语法高亮、代码自动补全、代码重构、查看定义功能&#xff0c;并且内置了命令行工具和Git版本控制系统。 下载链接&#xff1a;https://pan.quark.cn/s/3a90aef4b645 提取码&#xff1a;NFy5 通过上面…...

JVM常见知识点

在《深入理解Java虚拟机》一书中&#xff0c;介绍了JVM的相关特性。 1、JVM的内存区域划分 在真实的操作系统中&#xff0c;对于地址空间进行了分区域的设计&#xff0c;由于JVM是仿照真实的机器进行设计的&#xff0c;那么也进行了分区域的设计。核心区域有四个&#xff0c;…...

深入探索 Vue 3 Markdown 编辑器:高级功能与实现

目录 1. 为什么选择 Markdown 编辑器&#xff1f;2. 选择合适的 Markdown 编辑器3. 安装与基本配置安装 配置 Markdown 编辑器代码说明 4. 高级功能实现4.1 实时预览与双向绑定4.2 插入图片和图像上传安装图像上传插件配置图像上传插件 4.3 数学公式支持安装 KaTeX配置 KaTeX 插…...

vscode无法格式化go代码的问题

CTRLshiftp 点击Go:Install/Update Tools 点击全选&#xff0c;OK&#xff01;...

《Java程序设计》课程考核试卷

一、单项选择题&#xff08;本大题共10个小题&#xff0c;每小题2分&#xff0c;共20分&#xff09; 1.下列用来编译Java源文件为字节码文件的工具是&#xff08; &#xff09;。 A.java B.javadoc C.jar D.javac 2…...

one-hot (独热编码)

一、目的 假设我们现在需要对猫、 狗、 人这三个类别进行分类。 若以 0 代表猫&#xff0c; 以 1 代表狗&#xff0c; 以 2 代表人&#xff0c;会发现那么猫和狗之间距离为 1&#xff0c; 狗和人之间距离为 1&#xff0c; 而猫和人之间距离为 2。 假设真实标签是猫&#xff0…...

寒假1.23

题解 web&#xff1a;[极客大挑战 2019]Secret File&#xff08;文件包含漏洞&#xff09; 打开链接是一个普通的文字界面 查看一下源代码 发现一个链接&#xff0c;点进去看看 再点一次看看&#xff0c;没什么用 仔细看&#xff0c;有一个问题&#xff0c;当点击./action.ph…...

unity 粒子系统设置触发

1、勾选Triggers选项 2、将作为触发器的物体拉入队列当中&#xff0c;物体上必须挂载collider 3、将想要触发的方式&#xff08;Inide、Outside、Enter和Exit&#xff09;选择为”Callback“&#xff0c;其他默认为”Ignore“ 4、Collider Query Mode 设置为All&#xff1a…...

【C++】类和对象(五)

1、初始化列表 作用&#xff1a;C提供了初始化列表语法&#xff0c;用来初始化属性。 语法&#xff1a; 构造函数&#xff08;&#xff09;&#xff1a;属性1&#xff08;值1&#xff09;&#xff0c;属性2&#xff08;值2&#xff09;...{}示例&#xff1a; #include<i…...

超分辨率体积重建实现术前前列腺MRI和大病理切片组织病理学图像的3D配准

摘要: 磁共振成像(MRI)在前列腺癌诊断和治疗中的应用正在迅速增加。然而,在MRI上识别癌症的存在和范围仍然具有挑战性,导致即使是专家放射科医生在检测结果上也存在高度变异性。提高MRI上的癌症检测能力对于减少这种变异性并最大化MRI的临床效用至关重要。迄今为止,这种改…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合

强化学习&#xff08;Reinforcement Learning, RL&#xff09;是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程&#xff0c;然后使用强化学习的Actor-Critic机制&#xff08;中文译作“知行互动”机制&#xff09;&#xff0c;逐步迭代求解…...

学校招生小程序源码介绍

基于ThinkPHPFastAdminUniApp开发的学校招生小程序源码&#xff0c;专为学校招生场景量身打造&#xff0c;功能实用且操作便捷。 从技术架构来看&#xff0c;ThinkPHP提供稳定可靠的后台服务&#xff0c;FastAdmin加速开发流程&#xff0c;UniApp则保障小程序在多端有良好的兼…...

【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)

可以使用Sqliteviz这个网站免费编写sql语句&#xff0c;它能够让用户直接在浏览器内练习SQL的语法&#xff0c;不需要安装任何软件。 链接如下&#xff1a; sqliteviz 注意&#xff1a; 在转写SQL语法时&#xff0c;关键字之间有一个特定的顺序&#xff0c;这个顺序会影响到…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

MinIO Docker 部署:仅开放一个端口

MinIO Docker 部署:仅开放一个端口 在实际的服务器部署中,出于安全和管理的考虑,我们可能只能开放一个端口。MinIO 是一个高性能的对象存储服务,支持 Docker 部署,但默认情况下它需要两个端口:一个是 API 端口(用于存储和访问数据),另一个是控制台端口(用于管理界面…...

探索Selenium:自动化测试的神奇钥匙

目录 一、Selenium 是什么1.1 定义与概念1.2 发展历程1.3 功能概述 二、Selenium 工作原理剖析2.1 架构组成2.2 工作流程2.3 通信机制 三、Selenium 的优势3.1 跨浏览器与平台支持3.2 丰富的语言支持3.3 强大的社区支持 四、Selenium 的应用场景4.1 Web 应用自动化测试4.2 数据…...

自然语言处理——文本分类

文本分类 传统机器学习方法文本表示向量空间模型 特征选择文档频率互信息信息增益&#xff08;IG&#xff09; 分类器设计贝叶斯理论&#xff1a;线性判别函数 文本分类性能评估P-R曲线ROC曲线 将文本文档或句子分类为预定义的类或类别&#xff0c; 有单标签多类别文本分类和多…...

用 Rust 重写 Linux 内核模块实战:迈向安全内核的新篇章

用 Rust 重写 Linux 内核模块实战&#xff1a;迈向安全内核的新篇章 ​​摘要&#xff1a;​​ 操作系统内核的安全性、稳定性至关重要。传统 Linux 内核模块开发长期依赖于 C 语言&#xff0c;受限于 C 语言本身的内存安全和并发安全问题&#xff0c;开发复杂模块极易引入难以…...

云原生安全实战:API网关Envoy的鉴权与限流详解

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关 作为微服务架构的统一入口&#xff0c;负责路由转发、安全控制、流量管理等核心功能。 2. Envoy 由Lyft开源的高性能云原生…...