当前位置: 首页 > news >正文

coffee销售数据集分析:基于时间趋势分析的实操练习

**文章说明:**对coffee销售数据集的简单分析练习(时间趋势分析练习),主要是为了强化利用python进行数据分析的实操能力。属于个人的练习文章。
**注:**这是我第一次使用md格式编辑博客文章,排版上还是不是很熟悉,害,我尽量弄好看点。

分析过程

import pandas as pd
import matplotlib.pyplot as plt# 设置中文字体,防止绘图时中文标题出现乱码
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']# 导入数据
data = pd.read_csv(r"C:\Users\31049\Desktop\电商数据\coffee.csv")# 查看数据情况
print(data.shape)
data.head()
(2623, 6)
datedatetimecash_typecardmoneycoffee_name
02024-03-012024-03-01 10:15:50.520cardANON-0000-0000-000138.7Latte
12024-03-012024-03-01 12:19:22.539cardANON-0000-0000-000238.7Hot Chocolate
22024-03-012024-03-01 12:20:18.089cardANON-0000-0000-000238.7Hot Chocolate
32024-03-012024-03-01 13:46:33.006cardANON-0000-0000-000328.9Americano
42024-03-012024-03-01 13:48:14.626cardANON-0000-0000-000438.7Latte
# 检查数据类型、检查是否有缺失值
print(data.info())# 输出缺失值数量
print('\n缺失值数量:')
print( data.isnull().sum())
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2623 entries, 0 to 2622
Data columns (total 6 columns):#   Column       Non-Null Count  Dtype  
---  ------       --------------  -----  0   date         2623 non-null   object 1   datetime     2623 non-null   object 2   cash_type    2623 non-null   object 3   card         2534 non-null   object 4   money        2623 non-null   float645   coffee_name  2623 non-null   object 
dtypes: float64(1), object(5)
memory usage: 123.1+ KB
None缺失值数量:
date            0
datetime        0
cash_type       0
card           89
money           0
coffee_name     0
dtype: int64

发现1: card列有89个缺失值,可能有些用户不是使用card支付,而是其他支付方式。(待验证)
发现2: date和datetime列的数据类型为object类型,需要转化为日期类型

# 转化为datetime日期格式
data['date'] = pd.to_datetime(data['date'])
data['datetime'] = pd.to_datetime(data['datetime'])
# 异常值检查,检查monet列是否有0值或负值
data['money'].describe()
结果:最小值大于0,因此无异常值。

一、付款方式分析:观察‘支付方式’的趋势

# 计算不同支付方式的数量以及占比。
ty = data['cash_type'].value_counts()# 可视化
plt.pie(ty, labels=ty.index, autopct=lambda pct: f'{int(pct/100*ty.sum())}, {pct:.1f}%')
plt.title('不同支付方式的数量以及占比')
plt.show()

在这里插入图片描述

结论:支付方式只有两种(cash和card),96%的用户选择使用“card”进行支付。也说明了card列的89个缺失值是合理的(因为89个订单数据显示cash现金支付)

分析用户选择的支付方式随时间的变化趋势:

from datetime import datetime# 提取月份
data['month'] = data['date'].dt.month# unstack()方法用于将行索引转为列,或者更准确地说,是将 DataFrame 中的层次化索引的某一层转换为列
payment_counts = data.groupby(['month', 'cash_type']).size().unstack(fill_value=0)
payment_counts.index = payment_counts.index.astype(str)# 查看结果
print(payment_counts)
cash_type  card  cash
month                
3           175    31
4           168    28
5           241    26
6           223     4
7           237     0
8           272     0
9           344     0
10          426     0
11          259     0
12          189     0

结果可视化:

# 创建一个图形容器、子图对象
fig, ax = plt.subplots(figsize=(8, 5))# 绘制cash-card订单数量的柱状图
ax.bar(payment_counts.index, payment_counts['cash'], label='cash现金', color='blue')
ax.bar(payment_counts.index, payment_counts['card'], bottom=payment_counts['cash'], label='card', color='skyblue')# 同一坐标系下绘制每月的cash现金数量占比的折线图
ax1 = ax.twinx()
ax1.set_ylim([0, 0.5])
cash_pct = (payment_counts['cash'] / (payment_counts['card'] + payment_counts['cash'])).round(2)
ax1.plot(payment_counts.index, cash_pct, label='cash占比', marker='^', color='r')
for i in range(len(payment_counts)):ax1.text(payment_counts.index[i], cash_pct.iloc[i], s=f'{cash_pct.iloc[i]}%')ax.legend(loc='upper left')
ax1.legend(loc='best')
plt.title('cash-card数量的堆积柱状图\n每月的cash现金数量占比', fontsize=15)
ax.set_xlabel('month月份')
ax.set_ylabel('数量')
plt.show()

在这里插入图片描述

结论:在3-6月,cash现金支付的订单数占比逐月下降,且之后几个月全部订单都是使用card卡支付的,呈现出无现金支付的趋势。

二、销售趋势分析:热销时间段(时间趋势)

# 定义设置时间段的函数,[0-6,6-8,8-12,12-14,14-18,18-21,21-0], 对应[凌晨、早晨、早上、中午、下午、晚上、深夜] 
def f(hour):if hour<6:return '凌晨'elif hour<8:return '早晨'elif hour<12:return '早上'elif hour<14:return '中午'elif hour<18:return '下午'elif hour<21:return '晚上'else:return '深夜'# 增加一列表示时间段
data['time'] = data['datetime'].dt.hour.apply(f)# 查看数据
data.head()
datedatetimecash_typecardmoneycoffee_namemonthtime
02024-03-012024-03-01 10:15:50.520cardANON-0000-0000-000138.7Latte3早上
12024-03-012024-03-01 12:19:22.539cardANON-0000-0000-000238.7Hot Chocolate3中午
22024-03-012024-03-01 12:20:18.089cardANON-0000-0000-000238.7Hot Chocolate3中午
32024-03-012024-03-01 13:46:33.006cardANON-0000-0000-000328.9Americano3中午
42024-03-012024-03-01 13:48:14.626cardANON-0000-0000-000438.7Latte3中午
# 计算不同时间段的订单数量占比
nums_time = data.groupby('time').size().sort_values()# 可视化
plt.pie(nums_time, labels=nums_time.index, autopct=lambda pct: f'{int(pct/100*nums_time.sum())}\n{pct:.1f}%', radius=1)
plt.title('不同时间段的订单数及其占比')
plt.show()

在这里插入图片描述

结论:店铺早上(8-12点)的订单数最多,占比31%;第二下午(14-18点)占比24%;第三是晚上(18-21点)占比18%。这3个时间段占比总和近75%

三、咖啡销量分析:某时间段最畅销的咖啡(最受欢迎)

# 按照['time', 'coffee_name']分组,计算每组包含的销量数据,并通过unstack()方法转化行层次化索引(['time', 'coffee_name'])的‘coffee’索引转为列
cof_time = data.groupby(['time', 'coffee_name']).size().unstack(fill_value=0)# 查看数据
cof_time
coffee_nameAmericanoAmericano with MilkCappuccinoCocoaCortadoEspressoHot ChocolateLatte
time
下午861249536433152160
中午6293451538181370
早上11422680381273234180
早晨71210322029
晚上399210330221063110
深夜197435171544469

分时间段进行可视化:

# 创建一个图形对象fig、包含1*6张子图的ax对象
fig, ax = plt.subplots(6, 1, figsize=(6, 30))# 绘制每个时间段的销量柱状图
for i in range(len(cof_time)):# cof_time的取每行数据,并排序,用于可视化d = cof_time.iloc[i].sort_values(ascending=False)ax[i].bar(d.index, d.values, color='skyblue')ax[i].tick_params(axis='x', rotation=45)   #tick_params()可以调整刻度线的位置、大小、颜色、旋转、刻度标签的对齐方式、字体大小等ax[i].set_title(f'{cof_time.index[i]}——热销的coffee')ax[i].set_ylabel('销量')ax[i].grid(axis='y', alpha=0.5)fig.tight_layout()
plt.show()

在这里插入图片描述

结论:每个时间段最受欢迎的coffee类参考上图。

# 文章到此结束,有问题可以一起交流,我们下期文章再见叭

相关文章:

coffee销售数据集分析:基于时间趋势分析的实操练习

**文章说明&#xff1a;**对coffee销售数据集的简单分析练习&#xff08;时间趋势分析练习&#xff09;&#xff0c;主要是为了强化利用python进行数据分析的实操能力。属于个人的练习文章。 **注&#xff1a;**这是我第一次使用md格式编辑博客文章&#xff0c;排版上还是不是很…...

【转帖】eclipse-24-09版本后,怎么还原原来版本的搜索功能

【1】原贴地址&#xff1a;eclipse - 怎么还原原来版本的搜索功能_eclipse打开类型搜索类功能失效-CSDN博客 https://blog.csdn.net/sinat_32238399/article/details/145113105 【2】原文如下&#xff1a; 更新eclipse-24-09版本后之后&#xff0c;新的搜索功能&#xff08;CT…...

Centos 修改历史读录( HISTSIZE)

history命令 -c #清空命令历史 -r #读历史文件附加到历史列表 -w #保存历史列表到指定的历史文件 命令历史相关环境变量 HISTSIZE #命令历史记录的条数 HISTFILE #指定历史文件&#xff0c;默认为~/.bash_history HISTFILESIZE #命令历史文件记录历史的条数 以上变量可以 exp…...

lwIP——4 网络接口

1.lwIP网络接口 网络接口&#xff08;网卡&#xff09;&#xff1a;个人理解是处理网络层和数据传输关系的接口&#xff08;tcp/ip协议栈中的网络接口层部分&#xff09;&#xff0c;直接与硬件平台打交道 lwIP协议栈支持多种不同的网络接口&#xff08;网卡&#xff09;&#…...

pytest自动化测试 - pytest夹具的基本概念

<< 返回目录 1 pytest自动化测试 - pytest夹具的基本概念 夹具可以为测试用例提供资源(测试数据)、执行预置条件、执行后置条件&#xff0c;夹具可以是函数、类或模块&#xff0c;使用pytest.fixture装饰器进行标记。 1.1 夹具的作用范围 夹具的作用范围&#xff1a; …...

FreeRtos的使用教程

定义&#xff1a; RTOS实时操作系统, (Real Time Operating System), 指的是当外界事件发生时, 能够有够快的响应速度,调度一切可利用的资源, 控制实时任务协调一致的运行。 特点&#xff1a; 支持多任务管理&#xff0c; 处理多个事件&#xff0c; 实现更复杂的逻辑。 与计算…...

yolov11 解读简记

1 文章详细介绍了YOLOv11的架构设计&#xff0c;包括以下几个关键组件&#xff1a; C3k2块&#xff1a;这是YOLOv11引入的一种新型卷积块&#xff0c;替代了之前版本中的C2f块。C3k2块通过使用两个较小的卷积核代替一个大的卷积核&#xff0c;提高了计算效率&#xff0c;同时保…...

实验二 数据库的附加/分离、导入/导出与备份/还原

实验二 数据库的附加/分离、导入/导出与备份/还原 一、实验目的 1、理解备份的基本概念&#xff0c;掌握各种备份数据库的方法。 2、掌握如何从备份中还原数据库。 3、掌握数据库中各种数据的导入/导出。 4、掌握数据库的附加与分离&#xff0c;理解数据库的附加与分离的作用。…...

Kafka常见问题之 `javax.management.InstanceAlreadyExistsException`

文章目录 Kafka常见问题之 javax.management.InstanceAlreadyExistsException1. 概述2. 常见原因3. 具体异常示例4. 解决方案4.1 确保单一 Kafka Producer 实例4.2 配置 Kafka Broker 和 Producer 使用唯一的 JMX 名称&#xff08;对于Producer重点检查 client.id&#xff09;4…...

性能测试丨JVM 性能数据采集

什么是JVM性能数据采集&#xff1f; JVM性能数据采集是指通过一些工具和技术采集与Java虚拟机相关的性能数据。这些数据包括但不限于内存使用、CPU使用、垃圾回收&#xff08;GC&#xff09;行为、线程活动等。合理地分析这些数据&#xff0c;可以帮助我们找出系统的瓶颈&…...

计算机图形学实验练习(实验1.2-4.1AND补充实验12)

实验1.2 OpenGL与着色器编程 1.理论知识 1.1 OpenGL的含义 OpenGL是一种应用程序编程接口(Application Programming Interface,API),它是一种可以对图形硬件设备特性进行访问的软件库。OpenGL最新的4.3版本包含了超过500个不同的命令,可以用于设置所需的对象、图像和操…...

JWT实现单点登录

文章目录 JWT实现单点登录JWT 简介存在问题及解决方案登录流程后端程序实现前端保存Tokenstore存放信息的缺点及解决 校验流程&#xff1a;为gateway增加登录校验拦截器 另一种单点登录方法&#xff1a;Token&#xff0b;Redis实现单点登录 JWT实现单点登录 登录流程&#xff…...

云计算的概念与特点:开启数字化时代的新篇章

在当今数字化时代,云计算(Cloud Computing)已经成为推动技术创新和业务转型的核心力量。无论是大型企业、中小型企业,还是个人用户,云计算都为其提供了高效、灵活和经济的解决方案。本文将深入探讨云计算的概念及其核心特点,帮助读者全面了解这一革命性技术。 © ivw…...

salesforce中如何获取一个profile的18位id

在 Salesforce 中&#xff0c;要获取一个 Profile 的 18 位 ID&#xff0c;可以通过以下几种方式实现&#xff1a; 方法 1&#xff1a;通过 Developer Console 登录 Salesforce。 点击右上角的 头像 或 设置齿轮&#xff0c;选择 “开发者控制台”&#xff08;Developer Conso…...

Vue 3 中的标签 ref 与 defineExpose:模板引用与组件暴露

在 Vue 3 中&#xff0c;ref 不仅可以用于创建响应式数据&#xff0c;还可以用于获取 DOM 节点或组件实例。通过 ref&#xff0c;我们可以直接访问模板中的元素或组件&#xff0c;并在需要时操作它们。此外&#xff0c;defineExpose 用于在 <script setup> 语法中显式暴露…...

FLTK - FLTK1.4.1 - demo - adjuster.exe

文章目录 FLTK - FLTK1.4.1 - demo - adjuster.exe概述笔记根据代码&#xff0c;用fluid重建一个adjuster.fl 备注 - fluid生成的代码作为参考代码好了修改后可用的代码END FLTK - FLTK1.4.1 - demo - adjuster.exe 概述 想过一遍 FLTK1.4.1的demo和测试工程&#xff0c;工程…...

单路由及双路由端口映射指南

远程登录总会遇到登陆不上的情况&#xff0c;可能是访问的大门没有打开哦&#xff0c;下面我们来看看具体是怎么回事&#xff1f; 当软件远程访问时&#xff0c;主机需要两个条件&#xff0c;一是有一个唯一的公网IP地址&#xff08;运营商提供&#xff09;&#xff0c;二是开…...

专为课堂打造:宏碁推出三款全新耐用型 Chromebook

IT之家 1 月 25 日消息&#xff0c;宏碁&#xff08;Acer&#xff09;昨日&#xff08;1 月 24 日&#xff09;发布公告&#xff0c;针对教育市场&#xff0c;推出 Chromebook Spin 512 (R857T)、Chromebook Spin 511 (R757T) 和 Chromebook 511 (C737) 三款产品&#xff0c;兼…...

云计算架构学习之LNMP架构部署、架构拆分、负载均衡-会话保持

一.LNMP架构部署 1.1. LNMP服务搭建 1.磁盘信息 2.内存 3.负载信息 4.Nginx你们公司都用来干嘛 5.文件句柄(文件描述符 打开文件最大数量) 6.你处理过系统中的漏洞吗 SSH漏洞 7.你写过什么shell脚本 8.监控通过什么告警 zabbix 具体监控哪些内容 9.mysql redis查询 你好H…...

Python案例--暂停与时间格式化

在编程中&#xff0c;时间的处理是一个常见的需求。无论是日志记录、任务调度还是数据时间戳的生成&#xff0c;正确地获取和格式化时间都至关重要。Python 提供了强大的时间处理模块&#xff0c;其中 time 模块是基础且广泛使用的工具之一。本文将通过一个简单的示例&#xff…...

【javaweb项目idea版】蛋糕商城(可复用成其他商城项目)

该项目虽然是蛋糕商城项目&#xff0c;但是可以复用成其他商城项目或者购物车项目 想要源码的uu可点赞后私聊 技术栈 主要为&#xff1a;javawebservletmvcc3p0idea运行 功能模块 主要分为用户模块和后台管理员模块 具有商城购物的完整功能 基础模块 登录注册个人信息编辑…...

git gui 笔记

这里写目录标题 1. [下载安装git](https://blog.csdn.net/jiesunliu3215/article/details/111559125)2. [下载Git Gui](https://git-scm.com/downloads)3. 上传下载代码4. 创建版本5. 版本切换-checkout参考狂神说 git教程 -讲的是真的好gitee的git帮助 其他 1. 下载安装git 2…...

使用 Docker 运行 Oracle Database 23ai Free 容器镜像并配置密码与数据持久化

使用 Docker 运行 Oracle Database 23ai Free 容器镜像并配置密码与数据持久化 前言环境准备运行 Oracle Database 23ai Free 容器基本命令参数说明示例 注意事项高级配置参数说明 总结 前言 Oracle Database 23ai Free 是 Oracle 提供的免费版数据库&#xff0c;基于 Oracle …...

PyQt6医疗多模态大语言模型(MLLM)实用系统框架构建初探(下.代码部分)

医疗 MLLM 框架编程实现 本医疗 MLLM 框架结合 Python 与 PyQt6 构建,旨在实现多模态医疗数据融合分析并提供可视化界面。下面从数据预处理、模型构建与训练、可视化界面开发、模型 - 界面通信与部署这几个关键部分详细介绍编程实现。 6.1 数据预处理 在医疗 MLLM 框架中,多…...

salesforce公式字段 ISBLANK 函数和 <> NULL的区别

在 Salesforce 公式字段中&#xff0c;ISBLANK 函数和 <> NULL 的作用都可以用来检查字段是否有值&#xff0c;但它们的行为有一些显著的区别。以下是它们的详细对比和适用场景&#xff1a; 1. 基本区别 功能ISBLANK<> NULL主要作用检查字段是否为空&#xff08;适…...

微服务学习-服务调用组件 OpenFeign 实战

1. OpenFeign 接口方法编写规范 1.1. 在编写 OpenFeign 接口方法时&#xff0c;需要遵循以下规范 1.1.1.1. 接口中的方法必须使用 RequestMapping、GetMapping、PostMapping 等注解声明 HTTP 请求的类型。 1.1.1.2. 方法的参数可以使用 RequestParam、RequestHeader、PathVa…...

关于安卓greendao打包时报错问题修复

背景 项目在使用greendao的时候&#xff0c;debug安装没有问题&#xff0c;一到打包签名就报了。 环境 win10 jdk17 gradle8 项目依赖情况 博主的greendao是一个独立的module项目&#xff0c;项目目前只适配了java&#xff0c;不支持Kotlin。然后被外部集成。greendao版本…...

Ansible自动化运维实战--通过role远程部署nginx并配置(8/8)

文章目录 1、准备工作2、创建角色结构3、编写任务4、准备配置文件&#xff08;金甲模板&#xff09;5、编写变量6、编写处理程序7、编写剧本8、执行剧本Playbook9、验证-游览器访问每台主机的nginx页面 在 Ansible 中&#xff0c;使用角色&#xff08;Role&#xff09;来远程部…...

RGB 转HSV空间颜色寻找色块

文章目录 前言一、绿色确定二、红色确定总结 前言 提示&#xff1a;这里可以添加本文要记录的大概内容&#xff1a; 项目需要&#xff1a; 将RGB颜色空间转换为HSV颜色空间以寻找颜色&#xff0c;主要基于以下几个原因&#xff1a; 直观性&#xff1a; HSV颜色空间更符合人类…...

Spring Boot - 数据库集成04 - 集成Redis

Spring boot集成Redis 文章目录 Spring boot集成Redis一&#xff1a;redis基本集成1&#xff1a;RedisTemplate Jedis1.1&#xff1a;RedisTemplate1.2&#xff1a;实现案例1.2.1&#xff1a;依赖引入和属性配置1.2.2&#xff1a;redisConfig配置1.2.3&#xff1a;基础使用 2&…...