当前位置: 首页 > news >正文

01机器学习入门

机器学习入门可以分为以下几个阶段,逐步掌握核心概念和技能:


1. 基础准备

数学基础
  • 线性代数:矩阵运算、向量空间(推荐《线性代数及其应用》)。
  • 概率与统计:概率分布、贝叶斯定理、假设检验(推荐《概率论与数理统计》)。
  • 微积分:导数、梯度、优化方法(如梯度下降)。
编程工具
  • Python:必学语言,掌握基础语法、NumPy、Pandas、Matplotlib。
    • 推荐学习资源:Python官方教程、Codecademy Python课程。
  • Jupyter Notebook:交互式编程环境,适合数据分析和实验。

2. 机器学习核心概念

基本理论
  • 监督学习(分类、回归):标签数据训练模型(如线性回归、决策树、SVM)。
  • 无监督学习(聚类、降维):无标签数据发现模式(如K-Means、PCA)。
  • 评估指标:准确率、精确率、召回率、F1分数、ROC曲线。
经典算法
  • 线性回归、逻辑回归
  • 决策树与随机森林
  • 支持向量机(SVM)
  • K近邻(KNN)
  • 聚类算法(K-Means、DBSCAN)

3. 实践工具与框架

Scikit-learn
  • 学习使用Python的机器学习库,完成数据预处理、模型训练与评估。
    from sklearn.model_selection import train_test_split
    from sklearn.ensemble import RandomForestClassifier
    from sklearn.metrics import accuracy_score# 示例:随机森林分类
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
    model = RandomForestClassifier()
    model.fit(X_train, y_train)
    predictions = model.predict(X_test)
    print("准确率:", accuracy_score(y_test, predictions))
    
深度学习框架(可选)
  • TensorFlow/Keras:适合快速搭建神经网络。
  • PyTorch:动态计算图,研究友好。

4. 实战项目

入门级项目
  1. 鸢尾花分类(Scikit-learn内置数据集)。
  2. 手写数字识别(MNIST数据集)。
  3. 房价预测(Kaggle竞赛:House Prices)。
平台与资源
  • Kaggle:参与竞赛,学习他人代码(如Titanic生存预测)。
  • Google Colab:免费GPU/TPU环境,运行深度学习模型。

5. 学习资源推荐

在线课程
  • Coursera:吴恩达《机器学习》(理论扎实)。
  • Fast.ai:Practical Deep Learning for Coders(实战导向)。
书籍
  • 《机器学习》(周志华)——“西瓜书”,适合理论进阶。
  • 《Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow》——代码实践丰富。

6. 常见问题与建议

  • Q:数学不好能否学机器学习?
    A:可以!先从应用入手(如调库实现模型),再补数学。
  • Q:如何选择算法?
    A:根据问题类型(分类/回归/聚类)和数据规模选择,参考Scikit-learn算法选择图:Scikit-learn Cheat Sheet。
  • Q:模型效果差怎么办?
    A:检查数据质量(缺失值、特征工程)、尝试交叉验证、调整超参数。

7. 进阶方向

  • 深度学习:CNN(图像)、RNN(时序数据)、Transformer(NLP)。
  • 领域专项:自然语言处理(NLP)、计算机视觉(CV)、强化学习(RL)。
  • 部署落地:学习模型部署(如TensorFlow Serving、Flask API)。

按照以上路径,从基础到实践,逐步深入,机器学习并不遥不可及!🚀

相关文章:

01机器学习入门

机器学习入门可以分为以下几个阶段,逐步掌握核心概念和技能: 1. 基础准备 数学基础 线性代数:矩阵运算、向量空间(推荐《线性代数及其应用》)。概率与统计:概率分布、贝叶斯定理、假设检验(推…...

实现一个安全且高效的图片上传接口:使用ASP.NET Core和SHA256哈希

实现一个安全且高效的图片上传接口:使用ASP.NET Core和SHA256哈希 在现代Web应用程序中,图片上传功能是常见的需求之一。无论是用户头像、产品图片还是文档附件,确保文件上传的安全性和效率至关重要。本文将详细介绍如何使用ASP.NET Core构建…...

PyTorch中的movedim、transpose与permute

在PyTorch中,movedim、transpose 和 permute这三个操作都可以用来重新排列张量(tensor)的维度,它们功能相似却又有所不同。 movedim 🔗 torch.movedim 用途:将张量的一个或多个维度移动到新的位置。参数&…...

HTTP(1)

HTTP协议 HTTP是什么 HTTP(全称为"超文本传输协议")是一种应用非常广泛的基于TCP协议的应用层协议。 常见的应用场景: 浏览器与服务器之间的交互(访问网站)手机与服务器之间的通信多个服务器之间进行通信 …...

C#常考随笔2:函数中多次使用string的+=处理,为什么会产生大量内存垃圾(垃圾碎片),有什么好的方法可以解决?

在 C# 中,由于string类型是不可变的,当在函数中多次使用操作符来拼接字符串时,每次操作都会创建一个新的string对象,旧的对象则成为垃圾对象,这会导致大量的内存分配和垃圾回收,产生内存垃圾和碎片。 在需…...

leetcode刷题记录(一百)——121. 买卖股票的最佳时机

(一)问题描述 121. 买卖股票的最佳时机 - 力扣(LeetCode)121. 买卖股票的最佳时机 - 给定一个数组 prices ,它的第 i 个元素 prices[i] 表示一支给定股票第 i 天的价格。你只能选择 某一天 买入这只股票,并…...

MATLAB绘图时线段颜色、数据点形状与颜色等设置,介绍

MATLAB在绘图时,设置线段颜色和数据点的形状与颜色是提高图形可读性与美观性的重要手段。本文将详细介绍如何在 MATLAB 中设置这些属性。 文章目录 线段颜色设置单字母颜色表示法RGB 值表示法 数据点的形状与颜色设置设置数据点颜色和形状示例代码 运行结果小结 线段…...

CIMRTS材质美化--放大采样、缩小采样

最新的CIMRTS v1.0.10中在要素管理中的材质美化增加「放大采样」和「缩小采样」参数,对于透明树叶可以达到较好效果。 在CesiumLab中,一棵树处理完成后,在EarthSDK中,就是呈现这样缩小就会有树叶丢失的情况。效果如下&#xff1a…...

P8738 [蓝桥杯 2020 国 C] 天干地支

两种方法 #include<bits/stdc.h> using namespace std;int main(){int year;cin>>year;string tg[10] {"geng", "xin", "ren", "gui","jia", "yi", "bing", "ding", "wu&…...

PyCharm接入DeepSeek实现AI编程

目录 效果演示 创建API key 在PyCharm中下载CodeGPT插件 配置Continue DeepSeek 是一家专注于人工智能技术研发的公司&#xff0c;致力于开发高性能、低成本的 AI 模型。DeepSeek-V3 是 DeepSeek 公司推出的最新一代 AI 模型。其前身是 DeepSeek-V2.5&#xff0c;经过持续的…...

Java编程语言:辉煌的历史与未来前景

如果将软件开发世界比喻成一个宇宙&#xff0c;Java 无疑是其中最亮的星星之一。它从诞生起就改变了软件开发世界的格局。发展到今天&#xff0c;Java仍然是这个世界上最重要的编程语言之一。当然&#xff0c;它也面临着新的挑战。 Java的诞生 回溯到 1991 年&#xff0c;在 …...

麦田物语学习笔记:保存和加载场景中的物品

目录 基本流程 1.代码思路 2.代码实现 最终效果 补充知识点 1.序列化 2.委托 基本流程 现在在切换场景后,场景中的物品即使被拾取了,也还是会被重新加载出来,所以本篇文章的任务是在切换场景前后能保留当前场景的数据 1.代码思路 (1)为了保留处在地上的物品数据,就需要…...

页高速缓存与缓冲区缓存的应用差异

页高速缓存&#xff08;Page Cache&#xff09;与缓冲区缓存&#xff08;Buffer Cache&#xff09;是计算机系统中用于提高数据访问性能的两种不同类型的缓存机制&#xff0c;它们的差异主要体现在以下几个方面&#xff1a; 缓存目的 页高速缓存&#xff1a;主要用于加速对磁…...

深度学习 Pytorch 单层神经网络

神经网络是模仿人类大脑结构所构建的算法&#xff0c;在人脑里&#xff0c;我们有轴突连接神经元&#xff0c;在算法中&#xff0c;我们用圆表示神经元&#xff0c;用线表示神经元之间的连接&#xff0c;数据从神经网络的左侧输入&#xff0c;让神经元处理之后&#xff0c;从右…...

一文读懂 HTTP:Web 数据交换的基石

HTTP 概述 HTTP 是一种用作获取诸如 HTML 文档这类资源的协议。它是 Web 上进行任何数据交换的基础&#xff0c;同时&#xff0c;也是一种客户端—服务器&#xff08;client-server&#xff09;协议&#xff0c;也就是说&#xff0c;请求是由接受方——通常是 Web 浏览器——发…...

算法知识补充2

一部分&#xff1a;Tire树&#xff1a;高效地存储和查找字符串集合的数据结构acwing835 #include<iostream> #include<cstring> using namespace std; const int N100010; int son[N][26],cnt[N],idx; char str[N]; void insert(char str[]){int p0;for(int i0;st…...

Vue.js组件开发-实现对视频预览

在 Vue 中实现视频文件预览 实现步骤 创建 Vue 组件&#xff1a;构建一个 Vue 组件用于处理视频文件的选择和预览。文件选择&#xff1a;添加一个文件输入框&#xff0c;允许用户选择视频文件。读取文件&#xff1a;监听文件选择事件&#xff0c;使用 FileReader API 读取所选…...

SSM开发(三) spring与mybatis整合(含完整运行demo源码)

目录 本文主要内容 一、Spring整合MyBatis的三个关键点 二、整合步骤 1、创建一个Maven项目 2、在pom.xml文件中添加jar包的依赖 3、配置MyBatis 注解实现方式 XML配置文件实现 4、配置Spring 5、测试运行 本文主要内容 1. Spring + Mybatis整合; 2. MyBatis两种SQL…...

.NET MAUI进行UDP通信(二)

上篇文章有写过一个简单的demo&#xff0c;本次对项目进行进一步的扩展&#xff0c;添加tabbar功能。 1.修改AppShell.xaml文件&#xff0c;如下所示&#xff1a; <?xml version"1.0" encoding"UTF-8" ?> <Shellx:Class"mauiDemo.AppShel…...

14-6-3C++STL的list

&#xff08;一&#xff09;list的插入 1.list.insert(pos,elem);//在pos位置插入一个elem元素的拷贝&#xff0c;返回新数据的位置 #include <iostream> #include <list> using namespace std; int main() { list<int> lst; lst.push_back(10); l…...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

超短脉冲激光自聚焦效应

前言与目录 强激光引起自聚焦效应机理 超短脉冲激光在脆性材料内部加工时引起的自聚焦效应&#xff0c;这是一种非线性光学现象&#xff0c;主要涉及光学克尔效应和材料的非线性光学特性。 自聚焦效应可以产生局部的强光场&#xff0c;对材料产生非线性响应&#xff0c;可能…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

【C语言练习】080. 使用C语言实现简单的数据库操作

080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...

根据万维钢·精英日课6的内容,使用AI(2025)可以参考以下方法:

根据万维钢精英日课6的内容&#xff0c;使用AI&#xff08;2025&#xff09;可以参考以下方法&#xff1a; 四个洞见 模型已经比人聪明&#xff1a;以ChatGPT o3为代表的AI非常强大&#xff0c;能运用高级理论解释道理、引用最新学术论文&#xff0c;生成对顶尖科学家都有用的…...

浅谈不同二分算法的查找情况

二分算法原理比较简单&#xff0c;但是实际的算法模板却有很多&#xff0c;这一切都源于二分查找问题中的复杂情况和二分算法的边界处理&#xff0c;以下是博主对一些二分算法查找的情况分析。 需要说明的是&#xff0c;以下二分算法都是基于有序序列为升序有序的情况&#xf…...

SQL Server 触发器调用存储过程实现发送 HTTP 请求

文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

WEB3全栈开发——面试专业技能点P7前端与链上集成

一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染&#xff08;SSR&#xff09;与静态网站生成&#xff08;SSG&#xff09; 框架&#xff0c;由 Vercel 开发。它简化了构建生产级 React 应用的过程&#xff0c;并内置了很多特性&#xff1a; ✅ 文件系…...

二维FDTD算法仿真

二维FDTD算法仿真&#xff0c;并带完全匹配层&#xff0c;输入波形为高斯波、平面波 FDTD_二维/FDTD.zip , 6075 FDTD_二维/FDTD_31.m , 1029 FDTD_二维/FDTD_32.m , 2806 FDTD_二维/FDTD_33.m , 3782 FDTD_二维/FDTD_34.m , 4182 FDTD_二维/FDTD_35.m , 4793...