爬虫基础之爬取某基金网站+数据分析
声明: 本案例仅供学习参考使用,任何不法的活动均与本作者无关
网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台!
本案例所需要的模块:
1.requests 2.re(内置) 3.pandas 4.pyecharts
其他均需要 pip install 模块名
爬取步骤:
一.请求数据 模拟浏览器向服务器发送请求
F12 打开开发者模式 点击网络 搜索我们需要的数据 找到正确的接口

老样子 使用工具能够使我们节约时间 方便快捷但前提能够自己写就没问题


新建本地py文件复制过去 运行之后就可以看到与浏览器预览中一样的数据

接着我们需要对请求到的数据进行处理
这里我们使用正则是最好的
匹配所需的内容 即()里的
text = re.findall(r'datas:[(.*?)]',response.text)
二.提取数据 提取所需要的内容
然后我们观察放回的数据 把每条数据都提取出来


此时我们想该使用什么 去提取我们的数据呢 split字符串分割 or 正则
都不使用 此时选择eval函数去除引号 是最佳的选择

处理完之后就是一个个的元组 之后我们可以遍历元组保存数据
接着就是多页数据的采集 通过观察每一页的URL可知 pi参数控制着我们的页码
嵌套个for循坏 实现 翻页的操作

三.保存数据 保存数据到本地
_**因为这样保存的数据连个标头都没有 因此我们对照网站将表头写入
根据我们所拿取的数据对照 麻烦的话直接复制我的代码**_
# 保存的格式为utf-8-sig 单是utf-8的话会有乱码 看不懂 思密达with open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:f.write('基金代码,基金简称,English,日期,基金净值,基金累计净值,日增长率,基金近1周,基金近1月,基金近3月,基金近6月,基金近1年,基金近2年,基金近3年,今年来,成立来,False,False,False,False,手续费,False,False,False,False,False')

后面发现需要进一步的处理csv文件里的数据 我就随便给个表头写入 后续通过pandas 提取所需要的列形成新的表格

以下是本案例的源代码 供大家交流使用
import requests
import re
import csvwith open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:f.write('基金代码,基金简称,English,日期,基金净值,基金累计净值,日增长率,基金近1周,基金近1月,基金近3月,基金近6月,基金近1年,基金近2年,基金近3年,今年来,成立来,False,False,False,False,手续费,False,False,False,False,False')
headers = {"Accept": "*/*","Accept-Language": "zh-CN,zh;q=0.9,en;q=0.8,en-GB;q=0.7,en-US;q=0.6","Cache-Control": "no-cache","Connection": "keep-alive","Pragma": "no-cache","Referer": "https://fund.eastmoney.com/data/fundranking.html","Sec-Fetch-Dest": "script","Sec-Fetch-Mode": "no-cors","Sec-Fetch-Site": "same-origin","User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36 Edg/131.0.0.0","sec-ch-ua": ""Microsoft Edge";v="131", "Chromium";v="131", "Not_A Brand";v="24"","sec-ch-ua-mobile": "?0","sec-ch-ua-platform": ""Windows""
}
cookies = {"ASP.NET_SessionId": "2n3frbs0qlvk51gumxde43jz","st_si": "03571815072389","st_pvi": "42679690302429","st_sp": "2025-01-05%2020%3A21%3A57","st_inirUrl": "https%3A%2F%2Ffund.eastmoney.com%2Fdata%2F","st_sn": "1","st_psi": "20250105202156911-112200312936-7115758265","st_asi": "delete"
}
url = "https://fund.eastmoney.com/data/rankhandler.aspx"
for page in range(1,20):params = {"op": "ph","dt": "kf","ft": "all","rs": "","gs": "0","sc": "1nzf","st": "desc","sd": "2024-01-05","ed": "2025-01-05","qdii": "","tabSubtype": ",,,,,","pi": page,"pn": "50","dx": "1","v": "0.7427594655500473"}response = requests.get(url, headers=headers, cookies=cookies, params=params)text = re.findall(r'datas:[(.*?)]', response.text)[0]tuple_data = eval(text)for tup in tuple_data:with open('基金.csv', 'a', encoding='utf-8-sig', newline='
') as f:f.write(tup)f.write('
')
数据清洗模块
准备步骤:
下载pandas模块 pip install pandas
此时可以新建一个py文件 方便我们清洗数据
# 第一步导包
import pandas as pd# 读取文件
df = pd.read_csv('基金.csv')
# 获取该文件中所有的列名print(df.columns)

将我们所需要的复制下来 形成一个新的文件
import pandas as pddf = pd.read_csv('基金.csv')
# 语法df[['基金代码', '基金简称', 'English', '日期', '基金净值', '基金累计净值', '日增长率', '基金近1周',
'基金近1月', '基金近3月', '基金近6月', '基金近1年', '基金近2年', '基金近3年', '今年来', '成立来','手续费']].to_csv('基金_New.csv', index=False,encoding='utf-8-sig')print(df.columns)
现在就看着舒服多了

Explain:
如下图所示的列名中的数字0保存到csv文件中会消失 但在pycharm中可以正常显示

数据可视化模块
# 导包
# 需要下载pyecharts
import pandas as pd
from pyecharts.charts import Line
from pyecharts.options import LabelOpts
from pyecharts import options as optsdf = pd.read_csv('基金_New.csv')
# 将每一列的数据转换成列表 因为下面的表格数据需要list类型的
name = df['基金简称'].tolist()
value = df['基金净值'].tolist()
value_2 = df['基金累计净值'].tolist()
value_3 = df['基金近1周'].tolist()
# 折线图的生成
line = (Line()# 生成x y轴的值.add_xaxis(name).add_yaxis('基金净值', value, markpoint_opts=opts.MarkPointOpts(# 只显示数据中的最小值和最大值data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).add_yaxis('基金累计净值',value_2,markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")])).add_yaxis('基金近1周',value_3,markpoint_opts=opts.MarkPointOpts(data=[opts.MarkPointItem(type_="max", name="最大值"),opts.MarkPointItem(type_="min", name="最小值")]))# 将数值不显示出来 这样美观些.set_series_opts(label_opts=opts.LabelOpts(is_show=False))).render('found.html')
# 最后生成html文件


相关文章:
爬虫基础之爬取某基金网站+数据分析
声明: 本案例仅供学习参考使用,任何不法的活动均与本作者无关 网站:天天基金网(1234567.com.cn) --首批独立基金销售机构-- 东方财富网旗下基金平台! 本案例所需要的模块: 1.requests 2.re(内置) 3.pandas 4.pyecharts 其他均需要 pip install 模块名 爬取步骤: …...
使用 Aryn DocPrep、DocParse 和 Elasticsearch 向量数据库实现高质量 RAG
作者:来自 Elastic Hemant Malik 及 Jonathan Fritz 组织依靠自然语言查询从非结构化数据中获取见解,但要获得高质量的答案,首先要进行有效的数据准备。Aryn DocParse 和 DocPrep通过将复杂文档转换为结构化 JSON 或 markdown 来简化此过程&a…...
Couchbase UI: Server
在 Couchbase UI 中的 Server(服务器)标签页主要用于管理和监控集群中的各个节点。以下是 Server 标签页的主要内容和功能介绍: 1. 节点列表 显示集群中所有节点的列表,每个节点的详细信息包括: 节点地址࿱…...
Web3.0时代的挑战与机遇:以开源2+1链动模式AI智能名片S2B2C商城小程序为例的深度探讨
摘要:Web3.0作为互联网的下一代形态,承载着去中心化、开放性和安全性的重要愿景。然而,其高门槛、用户体验差等问题阻碍了Web3.0的主流化进程。本文旨在深入探讨Web3.0面临的挑战,并提出利用开源21链动模式、AI智能名片及S2B2C商城…...
langchain基础(一)
模型又可分为语言模型(擅长文本补全,输入和输出都是字符串)和聊天模型(擅长对话,输入时消息列表,输出是一个消息)两大类。 以调用openai的聊天模型为例,先安装langchain_openai库 1…...
【Android】布局文件layout.xml文件使用控件属性android:layout_weight使布局较为美观,以RadioButton为例
目录 说明举例 说明 简单来说,android:layout_weight为当前控件按比例分配剩余空间。且单个控件该属性的具体数值不重要,而是多个控件的属性值之比发挥作用,例如有2个控件,各自的android:layout_weight的值设为0.5和0.5࿰…...
RabbitMQ 架构分析
文章目录 前言一、RabbitMQ架构分析1、Broker2、Vhost3、Producer4、Messages5、Connections6、Channel7、Exchange7、Queue8、Consumer 二、消息路由机制1、Direct Exchange2、Topic Exchange3、Fanout Exchange4、Headers Exchange5、notice5.1、备用交换机(Alter…...
Qt Enter和HoverEnter事件
介绍 做PC开发的过程中或多或少都会接触到鼠标的悬停事件,Qt中处理鼠标悬停有Enter和HoverEnter两种事件 相同点 QEvent::Enter对应QEnterEvent,描述的是鼠标进入控件坐标范围之内的行为,QEnterEvent可以抓取鼠标的位置;QEvent…...
大语言模型之prompt工程
前言 随着人工智能的快速发展,我们正慢慢进入AIGC的新时代,其中对自然语言的处理成为了智能化的关键一环,在这个大背景下,“Prompt工程”由此产生,并且正逐渐成为有力的工具... LLM (Large Language Mode…...
WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用
WPF基础 | WPF 常用控件实战:Button、TextBox 等的基础应用 一、前言二、Button 控件基础2.1 Button 的基本定义与显示2.2 按钮样式设置2.3 按钮大小与布局 三、Button 的交互功能3.1 点击事件处理3.2 鼠标悬停与离开效果3.3 按钮禁用与启用 四、TextBox 控件基础4.…...
[笔记] 极狐GitLab实例 : 手动备份步骤总结
官方备份文档 : 备份和恢复极狐GitLab 一. 要求 为了能够进行备份和恢复,请确保您系统已安装 Rsync。 如果您安装了极狐GitLab: 如果您使用 Omnibus 软件包,则无需额外操作。如果您使用源代码安装,您需要确定是否安装了 rsync。…...
随笔十七、eth0单网卡绑定双ip的问题
在调试语音对讲过程中遇到过一个“奇怪”问题:泰山派作为一端,可以收到对方发来的语音,而对方不能收到泰山派发出的语音。 用wireshark抓包UDP发现,泰山派发送的地址是192.168.1.30,而给泰山派实际设置的静态地址是19…...
逻辑复制parallel并发参数测试
逻辑复制parallel并发参数测试 一、测试结果、测试环境描述 1.1、测试结果 cpu表中有1000万条数据,大小为1652MB,当更新的数据量多于10万条的时候有明显变化,多余30万条的时候相差2倍。 更新的数据量较多时,逻辑复制使用并发参数相比于使用…...
Cursor 帮你写一个小程序
Cursor注册地址 首先下载客户端 点击链接下载 1 打开微信开发者工具创建一个小程序项目 选择TS-基础模版 官方 2 然后使用Cursor打开小程序创建的项目 3 在CHAT聊天框输入自己的需求 比如 小程序功能描述:吃什么助手 项目名称: 吃什么小程序 功能目标…...
WordPress免费证书插件
为了在您的网站上启用HTTPS,您可以使用本插件快速获取Let’s Encrypt免费证书。 主要功能: 支持快速申请Let’s Encrypt免费证书支持通配符证书申请,每个证书最多可以绑定100个域名支持自动续期证书支持重颁发证书,证书过期或失…...
Linux:多线程[2] 线程控制
了解: Linux底层提供创建轻量级进程/进程的接口clone,通过选择是否共享资源创建。 vfork和fork都调用的clone进行实现,vfork和父进程共享地址空间-轻量级进程。 库函数pthread_create调用的也是底层的clone。 POSIX线程库 与线程有关的函数构…...
C++——list的了解和使用
目录 引言 forward_list与list 标准库中的list 一、list的常用接口 1.list的迭代器 2.list的初始化 3.list的容量操作 4.list的访问操作 5.list的修改操作 6.list的其他操作 二、list与vector的对比 结束语 引言 本篇博客要介绍的是STL中的list。 求点赞收藏评论…...
Agent群舞,在亚马逊云科技搭建数字营销多代理(Multi-Agent)(下篇)
在本系列的上篇中,小李哥为大家介绍了如何在亚马逊云科技上给社交数字营销场景创建AI代理的方案,用于社交动态的生成和对文章进行推广曝光。在本篇中小李哥将继续本系列的介绍,为大家介绍如何创建主代理,将多个子代理挂载到主代理…...
DBeaver连接MySQL数据库
打开DBeaver,点击“新建数据库连接”选项。 点击“测试连接”,首次连接mysql会提示下载对应的JDBC驱动,点击下载即可。 填写服务器地址(这里是本地测试)、mysql的用户名(root)和密码ÿ…...
Leetcode40: 组合总和 II
题目描述: 给定一个候选人编号的集合 candidates 和一个目标数 target ,找出 candidates 中所有可以使数字和为 target 的组合。 candidates 中的每个数字在每个组合中只能使用 一次 。 注意:解集不能包含重复的组合。 代码思路ÿ…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
linux之kylin系统nginx的安装
一、nginx的作用 1.可做高性能的web服务器 直接处理静态资源(HTML/CSS/图片等),响应速度远超传统服务器类似apache支持高并发连接 2.反向代理服务器 隐藏后端服务器IP地址,提高安全性 3.负载均衡服务器 支持多种策略分发流量…...
C++初阶-list的底层
目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...
【Linux】shell脚本忽略错误继续执行
在 shell 脚本中,可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行,可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令,并忽略错误 rm somefile…...
突破不可导策略的训练难题:零阶优化与强化学习的深度嵌合
强化学习(Reinforcement Learning, RL)是工业领域智能控制的重要方法。它的基本原理是将最优控制问题建模为马尔可夫决策过程,然后使用强化学习的Actor-Critic机制(中文译作“知行互动”机制),逐步迭代求解…...
【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器
——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的一体化测试平台,覆盖应用全生命周期测试需求,主要提供五大核心能力: 测试类型检测目标关键指标功能体验基…...
汽车生产虚拟实训中的技能提升与生产优化
在制造业蓬勃发展的大背景下,虚拟教学实训宛如一颗璀璨的新星,正发挥着不可或缺且日益凸显的关键作用,源源不断地为企业的稳健前行与创新发展注入磅礴强大的动力。就以汽车制造企业这一极具代表性的行业主体为例,汽车生产线上各类…...
2023赣州旅游投资集团
单选题 1.“不登高山,不知天之高也;不临深溪,不知地之厚也。”这句话说明_____。 A、人的意识具有创造性 B、人的认识是独立于实践之外的 C、实践在认识过程中具有决定作用 D、人的一切知识都是从直接经验中获得的 参考答案: C 本题解…...
【从零学习JVM|第三篇】类的生命周期(高频面试题)
前言: 在Java编程中,类的生命周期是指类从被加载到内存中开始,到被卸载出内存为止的整个过程。了解类的生命周期对于理解Java程序的运行机制以及性能优化非常重要。本文会深入探寻类的生命周期,让读者对此有深刻印象。 目录 …...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...

