GRAPHARG——学习
20250106
项目git地址:https://github.com/microsoft/graphrag.git
版本:1.2.0
### This config file contains required core defaults that must be set, along with a handful of common optional settings.
### For a full list of available settings, see https://microsoft.github.io/graphrag/config/yaml/### LLM settings ###
## There are a number of settings to tune the threading and token limits for LLM calls - check the docs.encoding_model: cl100k_base # this needs to be matched to your model!
`hiuuh`
llm:api_key: `填你自己的` # set this in the generated .env filetype: openai_chat # or azure_openai_chatmodel: deepseek-chatmodel_supports_json: true # recommended if this is available for your model.# audience: "https://cognitiveservices.azure.com/.default"api_base: https://api.deepseek.com # https://<instance>.openai.azure.comapi_version: V3# organization: <organization_id>deployment_name: maweijunparallelization:stagger: 0.3# num_threads: 50async_mode: threaded # or asyncioembeddings:async_mode: threaded # or asynciovector_store: type: lancedbdb_uri: 'output/lancedb'container_name: defaultoverwrite: truellm:api_key: `填你自己的`type: openai_embedding # or azure_openai_embeddingmodel: embedding-2api_base: https://open.bigmodel.cn/api/paas/v4# api_base: https://<instance>.openai.azure.com# api_version: 2024-02-15-preview# audience: "https://cognitiveservices.azure.com/.default"# organization: <organization_id># deployment_name: <azure_model_deployment_name>### Input settings ###input:type: file # or blobfile_type: text # or csvbase_dir: "input"file_encoding: utf-8file_pattern: ".*\\.txt$"chunks:size: 1200overlap: 100group_by_columns: [id]### Storage settings ###
## If blob storage is specified in the following four sections,
## connection_string and container_name must be providedcache:type: file # one of [blob, cosmosdb, file]base_dir: "cache"reporting:type: file # or console, blobbase_dir: "output/${timestamp}/logs"storage:type: file # one of [blob, cosmosdb, file]base_dir: "output/${timestamp}/artifacts"## only turn this on if running `graphrag index` with custom settings
## we normally use `graphrag update` with the defaults
update_index_storage:# type: file # or blob# base_dir: "update_output"### Workflow settings ###skip_workflows: []entity_extraction:prompt: "prompts/entity_extraction.txt"entity_types: [organization,person,geo,event]max_gleanings: 1summarize_descriptions:prompt: "prompts/summarize_descriptions.txt"max_length: 500claim_extraction:enabled: falseprompt: "prompts/claim_extraction.txt"description: "Any claims or facts that could be relevant to information discovery."max_gleanings: 1community_reports:prompt: "prompts/community_report.txt"max_length: 2000max_input_length: 8000cluster_graph:max_cluster_size: 10embed_graph:enabled: false # if true, will generate node2vec embeddings for nodesumap:enabled: false # if true, will generate UMAP embeddings for nodes (embed_graph must also be enabled)snapshots:graphml: trueembeddings: falsetransient: false### Query settings ###
## The prompt locations are required here, but each search method has a number of optional knobs that can be tuned.
## See the config docs: https://microsoft.github.io/graphrag/config/yaml/#querylocal_search:prompt: "prompts/local_search_system_prompt.txt"global_search:map_prompt: "prompts/global_search_map_system_prompt.txt"reduce_prompt: "prompts/global_search_reduce_system_prompt.txt"knowledge_prompt: "prompts/global_search_knowledge_system_prompt.txt"drift_search:prompt: "prompts/drift_search_system_prompt.txt"reduce_prompt: "prompts/drift_search_reduce_prompt.txt"basic_search:prompt: "prompts/basic_search_system_prompt.txt"
这段代码是一个配置文件,用于设置和调整 GraphARG 框架的行为。GraphARG 是一个基于图结构的推理框架,通常用于处理图数据和自然语言数据的联合任务。以下是对配置文件的详细解释:
1. LLM 设置 (LLM Settings)
这部分配置与 大语言模型 (LLM) 相关,用于定义如何调用和处理 LLM 的 API。
-
encoding_model: cl100k_base
指定编码模型,需要与使用的 LLM 模型匹配。cl100k_base是 OpenAI 模型常用的编码器。 -
llm
配置 LLM 的 API 调用参数:api_key: LLM 的 API 密钥,通常存储在.env文件中。type: LLM 的类型,例如openai_chat或azure_openai_chat。model: 使用的 LLM 模型名称,例如deepseek-chat。model_supports_json: 是否支持 JSON 格式的输入输出。api_base: LLM API 的基础 URL。api_version: API 的版本号。deployment_name: 部署名称(适用于 Azure OpenAI)。
-
parallelization
配置并行化参数:stagger: 调用 API 时的延迟时间(秒),用于避免速率限制。num_threads: 并行线程数(未启用)。
-
async_mode
指定异步模式,可以是threaded(多线程)或asyncio(异步 I/O)。
2. 嵌入模型设置 (Embeddings Settings)
这部分配置与 嵌入模型 相关,用于生成文本或节点的向量表示。
-
async_mode
指定嵌入模型的异步模式。 -
vector_store
配置向量存储:type: 向量存储类型,例如lancedb。db_uri: 数据库的 URI。container_name: 容器名称。overwrite: 是否覆盖现有数据。
-
llm
配置嵌入模型的 API 调用参数:api_key: 嵌入模型的 API 密钥。type: 嵌入模型类型,例如openai_embedding或azure_openai_embedding。model: 嵌入模型名称,例如embedding-2。api_base: 嵌入模型 API 的基础 URL。
3. 输入设置 (Input Settings)
这部分配置与输入数据的处理相关。
-
input
配置输入数据的来源和格式:type: 输入类型,例如file(文件)或blob(Blob 存储)。file_type: 文件类型,例如text(文本)或csv。base_dir: 输入文件的根目录。file_encoding: 文件编码格式,例如utf-8。file_pattern: 文件名的正则表达式模式,用于匹配文件。
-
chunks
配置文本分块参数:size: 每个块的大小(字符数)。overlap: 块之间的重叠字符数。group_by_columns: 按列分组(适用于结构化数据)。
4. 存储设置 (Storage Settings)
这部分配置与缓存、报告和存储相关。
-
cache
配置缓存存储:type: 缓存类型,例如file(文件)或blob(Blob 存储)。base_dir: 缓存文件的根目录。
-
reporting
配置报告输出:type: 报告类型,例如file(文件)或console(控制台)。base_dir: 报告文件的根目录。
-
storage
配置存储:type: 存储类型,例如file(文件)或blob(Blob 存储)。base_dir: 存储文件的根目录。
-
update_index_storage
配置索引更新存储(通常不需要手动启用)。
5. 工作流设置 (Workflow Settings)
这部分配置与框架的工作流相关。
-
skip_workflows
指定要跳过的工作流。 -
entity_extraction
配置实体抽取任务:prompt: 实体抽取的提示模板文件路径。entity_types: 要抽取的实体类型,例如organization、person等。max_gleanings: 最大抽取数量。
-
summarize_descriptions
配置文本摘要任务:prompt: 摘要生成的提示模板文件路径。max_length: 摘要的最大长度。
-
claim_extraction
配置声明抽取任务(默认禁用):prompt: 声明抽取的提示模板文件路径。description: 任务的描述。max_gleanings: 最大抽取数量。
-
community_reports
配置社区报告生成任务:prompt: 报告生成的提示模板文件路径。max_length: 报告的最大长度。max_input_length: 输入的最大长度。
-
cluster_graph
配置图聚类任务:max_cluster_size: 最大聚类大小。
-
embed_graph
配置图嵌入任务(默认禁用)。 -
umap
配置 UMAP 降维任务(默认禁用)。 -
snapshots
配置快照输出:graphml: 是否生成 GraphML 格式的快照。embeddings: 是否生成嵌入快照。transient: 是否生成临时快照。
6. 查询设置 (Query Settings)
这部分配置与查询任务相关。
-
local_search
配置本地搜索任务:prompt: 本地搜索的提示模板文件路径。
-
global_search
配置全局搜索任务:map_prompt: 全局搜索的 Map 阶段提示模板。reduce_prompt: 全局搜索的 Reduce 阶段提示模板。knowledge_prompt: 全局搜索的知识提示模板。
-
drift_search
配置漂移搜索任务:prompt: 漂移搜索的提示模板文件路径。reduce_prompt: 漂移搜索的 Reduce 阶段提示模板。
-
basic_search
配置基础搜索任务:prompt: 基础搜索的提示模板文件路径。
总结
这个配置文件定义了 GraphARG 框架的核心行为,包括:
- LLM 和嵌入模型的 API 调用。
- 输入数据的处理方式。
- 缓存、报告和存储的设置。
- 工作流的任务配置。
- 查询任务的提示模板和参数。
通过调整这些配置,可以灵活地适应不同的应用场景和需求。如果需要更详细的配置选项,可以参考官方文档:GraphARG 配置文档。
相关文章:
GRAPHARG——学习
20250106 项目git地址:https://github.com/microsoft/graphrag.git 版本:1.2.0 ### This config file contains required core defaults that must be set, along with a handful of common optional settings. ### For a full list of available setti…...
【Rust自学】15.6. RefCell与内部可变性:“摆脱”安全性限制
题外话,这篇文章一共4050字,是截止到目前为止最长的文章,如果你能坚持读完并理解,那真的很强! 喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以…...
14.模型,纹理,着色器
模型、纹理和着色器是计算机图形学中的三个核心概念,用通俗易懂的方式来解释: 1. 模型:3D物体的骨架 通俗解释: 模型就像3D物体的骨架,定义了物体的形状和结构。 比如,一个房子的模型包括墙、屋顶、窗户等…...
【C语言分支与循环结构详解】
目录 ---------------------------------------begin--------------------------------------- 一、分支结构 1. if语句 2. switch语句 二、循环结构 1. for循环 2. while循环 3. do-while循环 三、嵌套结构 结语 -----------------------------------------end----…...
新项目上传gitlab
Git global setup git config --global user.name “FUFANGYU” git config --global user.email “fyfucnic.cn” Create a new repository git clone gitgit.dev.arp.cn:casDs/sawrd.git cd sawrd touch README.md git add README.md git commit -m “add README” git push…...
qt-QtQuick笔记之常见项目类简要介绍
qt-QtQuick笔记之常见项目类简要介绍 code review! 文章目录 qt-QtQuick笔记之常见项目类简要介绍1.QQuickItem2.QQuickRectangle3.QQuickImage4.QQuickText5.QQuickBorderImage6.QQuickTextInput7.QQuickButton8.QQuickSwitch9.QQuickListView10.QQuickGridView11.QQuickPopu…...
Continuous Batching 连续批处理
原始论文题目: Continuous Batching — ORCA: a distributed serving system for Transformer-based generative models 关键词: Continuous Batching, iteration-level scheduling, selective batching 1.迭代级调度(iteration-level scheduling) Orca系统又由几个关键…...
海外问卷调查渠道查如何设置:最佳实践+示例
随着经济全球化和一体化进程的加速,企业间的竞争日益加剧,为了获得更大的市场份额,对企业和品牌而言,了解受众群体的的需求、偏好和痛点才是走向成功的关键。而海外问卷调查才是获得受众群体痛点的关键,制作海外问卷调…...
把本地搭建的hexo博客部署到自己的服务器上
配置远程服务器的git 安装git 安装依赖工具包 yum install -y curl-devel expat-devel gettext-devel openssl-devel zlib-devel安装编译工具 yum install -y gcc perl-ExtUtils-MakeMaker package下载git,也可以去官网下载了传到服务器上 wget https://www.ke…...
初阶数据结构:链表(二)
目录 一、前言 二、带头双向循环链表 1.带头双向循环链表的结构 (1)什么是带头? (2)什么是双向呢? (3)那什么是循环呢? 2.带头双向循环链表的实现 (1)节点结构 (2…...
postgresql根据主键ID字段分批删除表数据
生产环境针对大表的处理相对比较麻烦。 方案1、直接truncate,可能会遇到系统卡主的情况,因为truncate的过程中会对表进行加锁,会导致数据不能正常的写入 方案2、创建一个同结构的表结构,rename旧表,不停业务rename表担…...
10.business english-global market
eco-friendly case study: 案例学习 At the workshop工作坊, they agreed to emphasize eco-friendliness,adapt messageing, and boost digital marketing to stand out globally. Our study shows that more people want eco-friendly products in different places.Looks …...
C 语言实现计算一年中指定日期是第几天 题】
引言 在编程的世界里,处理日期和时间相关的问题是非常常见的。比如在日历应用、任务管理系统、数据分析等场景中,经常需要计算某个日期在一年中是第几天。本文将详细介绍如何使用 C 语言来实现这一功能,通过分析代码的结构、逻辑以及可能存在…...
深入理解三高架构:高可用性、高性能、高扩展性的最佳实践
引言 在现代互联网环境下,随着用户规模和业务需求的快速增长,系统架构的设计变得尤为重要。为了确保系统能够在高负载和复杂场景下稳定运行,"三高架构"(高可用性、高性能、高扩展性)成为技术架构设计中的核…...
【反悔堆】力扣1642. 可以到达的最远建筑
给你一个整数数组 heights ,表示建筑物的高度。另有一些砖块 bricks 和梯子 ladders 。 你从建筑物 0 开始旅程,不断向后面的建筑物移动,期间可能会用到砖块或梯子。 当从建筑物 i 移动到建筑物 i1(下标 从 0 开始 )…...
关于使用Mybatis-plus的TableNameHandler动态表名处理器实现分表业务的详细介绍
引言 随着互联网应用的快速发展,数据量呈爆炸式增长。传统的单表设计在面对海量数据时显得力不从心,容易出现性能瓶颈、查询效率低下等问题。为了提高数据库的扩展性和响应速度,分表(Sharding)成为了一种常见的解决方案…...
docker 安装 redis 详解
在平常的开发工作中,我们经常会用到 redis,那么 docker 下应该如何安装 redis 呢?简单来说:第一步:拉取redis镜像;第二步:设置 redis.conf 配置文件;第三步:编写 docker-…...
56. 合并区间
【题目】:56. 合并区间 class Solution { public:vector<vector<int>> merge(vector<vector<int>>& intervals) {// 按照左端点排序sort(intervals.begin(), intervals.end(), [&](vector<int> lhs, vector<int> rhs)…...
BOM对象location与数组操作结合——查询串提取案例
BOM对象location与数组操作结合——查询串提取案例 前置知识 1. Location 对象 Location 对象是 JavaScript 提供的内置对象之一,它表示当前窗口或框架的 URL,并允许你通过它操作或获取 URL 的信息。可以通过 window.location 访问。 主要属性&#…...
Jetson Orin Nano Super之 onnxruntime 编译安装
Jetson Orin Nano Super之 onnxruntime 编译安装 1. 源由2. 步骤步骤一:安装3.26 cmake步骤二:下载代码步骤三:编译代码步骤四:找到安装包步骤五:安装whl包 3. 注意4. 参考资料 1. 源由 Build onnxruntime 1.19.2 fai…...
iOS 26 携众系统重磅更新,但“苹果智能”仍与国行无缘
美国西海岸的夏天,再次被苹果点燃。一年一度的全球开发者大会 WWDC25 如期而至,这不仅是开发者的盛宴,更是全球数亿苹果用户翘首以盼的科技春晚。今年,苹果依旧为我们带来了全家桶式的系统更新,包括 iOS 26、iPadOS 26…...
Spring Boot 实现流式响应(兼容 2.7.x)
在实际开发中,我们可能会遇到一些流式数据处理的场景,比如接收来自上游接口的 Server-Sent Events(SSE) 或 流式 JSON 内容,并将其原样中转给前端页面或客户端。这种情况下,传统的 RestTemplate 缓存机制会…...
PHP和Node.js哪个更爽?
先说结论,rust完胜。 php:laravel,swoole,webman,最开始在苏宁的时候写了几年php,当时觉得php真的是世界上最好的语言,因为当初活在舒适圈里,不愿意跳出来,就好比当初活在…...
Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件
今天呢,博主的学习进度也是步入了Java Mybatis 框架,目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学,希望能对大家有所帮助,也特别欢迎大家指点不足之处,小生很乐意接受正确的建议&…...
线程与协程
1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指:像函数调用/返回一样轻量地完成任务切换。 举例说明: 当你在程序中写一个函数调用: funcA() 然后 funcA 执行完后返回&…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...
uniapp微信小程序视频实时流+pc端预览方案
方案类型技术实现是否免费优点缺点适用场景延迟范围开发复杂度WebSocket图片帧定时拍照Base64传输✅ 完全免费无需服务器 纯前端实现高延迟高流量 帧率极低个人demo测试 超低频监控500ms-2s⭐⭐RTMP推流TRTC/即构SDK推流❌ 付费方案 (部分有免费额度&#x…...
NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
MySQL中【正则表达式】用法
MySQL 中正则表达式通过 REGEXP 或 RLIKE 操作符实现(两者等价),用于在 WHERE 子句中进行复杂的字符串模式匹配。以下是核心用法和示例: 一、基础语法 SELECT column_name FROM table_name WHERE column_name REGEXP pattern; …...
关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...
