当前位置: 首页 > news >正文

【统计的思想】假设检验(二)

假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。

如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立的,我们就犯了弃真错误,也就是第一类错误。这种错误出现的可能性,叫做弃真概率。

如果我们通过假设检验接受了零假设,也只是因为测试结果和期望的差异并不显著,并不足以推翻零假设,并不是说零假设就肯定成立。如果零假设事实上并不成立,我们就犯了取伪错误,也就是第二类错误。这种错误出现的可能性,叫做取伪概率。

显然,如果减小显著水平,就更不容易推翻零假设,所以弃真概率会变小,但相应的取伪概率就会变大;而增大显著水平的话,就更容易推翻零假设,取伪概率会变小,但弃真概率就会变大。

那怎么才能同时减小弃真概率和取伪概率呢?一般要在减小显著水平的同时,增加样本量。来看一个例子。

很多人以为结核病已经绝迹了,实际上并不是。2023年世卫组织发布的报告说,结核病发病率高达万分之5.2,仍然是世界上最常见的传染病之一。结核病的传统药物治愈率是60%。最近有一家药厂研制了一种新药,随机找了50名患者做临床试验,治愈率达到了70%。那么,我们能不能下结论说,这种新药的药效比传统药物更好呢?

我们来做假设检验:

  1. 建立零假设。假设新药的药效跟传统药没有差别,治愈率还是60%;

  2. 设定显著水平。取α=0.01;

  3. 计算测试结果的发生概率。如果新药的治愈率是60%,就是说每个人被治愈的可能性都是60%,那么50人里有70%的人、也就是35人被治愈的概率是多少呢?可以用二项分布来计算,算出来的概率是0.04;

  4. 统计推断。由于测试结果的发生概率比显著水平0.01要大,所以我们会接受零假设,结论是新药跟传统药没有显著差别。

但是如果我们扩大临床试验的规模,把人数增加到120人,样本治愈率还是70%,用同样的方法算下来,概率是0.006,就比显著水平0.01要小了,于是零假设就被推翻了,结论就会变成“新药的药效要明显好于传统药物”。

这两个结论,哪一个更靠谱呢?很明显是后者。因为样本量越大, 样本就越能代表总体,抽样误差就越小。把样本量增大到120之后,发现假设检验的结论变了,说明之前样本量是50的时候,我们犯了取伪错误。

所以我们说,要想同时减小弃真概率和取伪概率,一般就需要增加样本量。这跟统计抽样测试里的结论是类似的。当然样本量越大,测试成本也越高。

在统计抽样测试中,我们可以借助操作特性曲线,来描述测试设计方案背后的生产方风险和使用方风险,给测试结论做一个必要的补充。这是统计抽样测试缓解测试可信性问题的常规思路。

操作特性曲线

海旭老师,公众号:重新认识测试设计【统计的思想】统计抽样测试(二)

其实还有一个办法,可以达到类似的效果,就是用假设检验。

还是来看例子:假设待测批的批量是5000,要求不合格率不超过25%,抽取了305件样品做检验,有92件不合格,样本的不合格率是30.2%。那么,待测批是不是一个合格批呢?按统计抽样测试的判断,结论应该是不合格,但这个结论不一定靠谱,有可能犯弃真错误,所以需要用操作特性曲线来补充说明。

如果用假设检验,应该怎么做呢?在前面的文章中,我们已经介绍过抽样分布的一组基本规律:

① 样本量越大,样本均值越趋近于服从正态分布;

② 样本均值的数学期望与总体的数学期望相同;

③ 样本均值的方差等于总体方差除以样本量。

抽样分布的基本规律

海旭老师,公众号:重新认识测试设计【统计的思想】假设检验(一)

如果我们把不合格的样本记作1,合格的样本记作0,那样本均值就等同于样本不合格率。这样,上述基本规律就能应用于统计抽样测试了,即:

① 当样本量n很大的时候,样本不合格率近似服从正态分布;

② 样本不合格率的数学期望,等于整批的不合格率p;

③ 样本不合格率的方差,等于p(1-p)/n。因为整批服从伯努利分布,方差是p(1-p)。

基于此,我们就可以做假设检验了:

  1. 建立零假设。假设整批的不合格率是25%,是一个合格批;

  2. 设定显著水平。这里取α=0.05;

  3. 计算测试结果发生的概率。既然样本不合格率服从正态分布,均值是25%,方差是:\sigma_{\hat{p}}=\sqrt{\frac{p(1-p)}{n}}=0.0248

    那么样本不合格率达到30.2%以上的概率,就是:P(T)=1-\Phi\left( \frac{0.302-0.25}{0.0248} \right)=0.0179

  4. 统计推断。测试结果发生的概率比显著水平小,所以否定零假设。

最终的测试结论是,在显著水平0.05的概率意义下,待测批不合格。可以看到,假设检验是从显著水平的角度来补充测试结论的,同样能缓解测试可信性问题。

相关文章:

【统计的思想】假设检验(二)

假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。 如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立…...

KNN算法学习实践

1.理论学习 原文链接 ShowMeAI知识社区 2.案例实践 假如一套房子打算出租,但不知道市场价格,可以根据房子的规格(面积、房间数量、厕所数量、容纳人数等),在已有数据集中查找相似(K近邻)规格…...

数据可视化的图表

1.折线图反映了一段时间内事物连续的动态变化规律,适用于描述一个变量随另一个变量变化的趋势,通常用于绘制连续数据,适合数据点较多的情况。 2.散点图是以直角坐标系中各点的密集程度和变化趋势来表示两种现象间的相关关系,常用于显示和比较数值。当要在不考虑时间…...

动手学深度学习-卷积神经网络-3填充和步幅

目录 填充 步幅 小结 在上一节的例子(下图) 中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样,假设输入形状为nhnw,卷积核形…...

【JS|第28期】new Event():前端事件处理的利器

日期:2025年1月24日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方&#xf…...

Spring Boot 中的事件发布与监听:深入理解 ApplicationEventPublisher(附Demo)

目录 前言1. 基本知识2. Demo3. 实战代码 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全&am…...

【Spring】Spring启示录

目录 前言 一、示例程序 二、OCP开闭原则 三、依赖倒置原则DIP 四、控制反转IOC 总结 前言 在软件开发的世界里,随着项目的增长和需求的变化,如何保持代码的灵活性、可维护性和扩展性成为了每个开发者必须面对的问题。传统的面向过程或基于类的设计…...

ospf动态路由配置,cost路径调整,ospf认证实验

一、实验拓扑如图: 接口ip配置网络 :10.17.12.* 10.17.13.* ,10.17.23.* 回环接口配置分别为 10.0.1.1 ,10.0.1.2,10.0.1.3对应三台路由器 ar1配置接口ip interface GigabitEthernet0/0/0 ip address 10.17.12.1…...

在Rust应用中访问.ini格式的配置文件

在Rust应用中访问.ini格式的配置文件,你可以使用第三方库,比如 ini 或 config. 下面是一个使用 ini 库的示例,该库允许你读取和解析.ini文件。 使用 ini 库 添加依赖 首先,你需要在你的 Cargo.toml 文件中添加 ini 库的依赖&am…...

批量处理多个模型的预测任务

#!/bin/bash# 检查是否传入必要的参数&#xff0c;若未传入参数则打印用法并退出 if [ "$#" -lt 1 ]; thenecho "用法: $0 <file_path>"echo "示例: $0 /home/aistudio/work/PaddleSeg/city/cityscapes_urls_extracted.txt"exit 1 fi# 读取…...

Java 编程初体验

Java学习资料 Java学习资料 Java学习资料 一、引言 在当今数字化的时代&#xff0c;编程已然成为一项极具价值的技能。而 Java 作为一门广泛应用于企业级开发、移动应用、大数据等众多领域的编程语言&#xff0c;吸引着无数初学者投身其中。当我们初次踏入 Java 编程的世界&…...

element-plus 的table section如何实现单选

如果是单选那么全新的按钮应该隐藏或者不可编辑的状态。但是我没找到改变成不可编辑的方法&#xff0c;只能采取隐藏 <template><!-- 注意要包一层div根元素&#xff0c;否则css样式可能会不生效&#xff0c;原因不详 --><div><el-table ref"proTab…...

【JavaEE进阶】图书管理系统 - 壹

目录 &#x1f332;序言 &#x1f334;前端代码的引入 &#x1f38b;约定前后端交互接口 &#x1f6a9;接口定义 &#x1f343;后端服务器代码实现 &#x1f6a9;登录接口 &#x1f6a9;图书列表接口 &#x1f384;前端代码实现 &#x1f6a9;登录页面 &#x1f6a9;…...

牛客周赛 Round 77 题解

文章目录 A-时间表B-数独数组D-隐匿社交网络E-1or0 A-时间表 签到题 #include <bits/stdc.h> using namespace std;int main() {int a[6] {20250121,20250123,20250126,20250206,20250208,20250211};int n; cin >> n;cout << a[n - 1];return 0; }B-数独数…...

Mybatis配置文件详解

MyBatis通过XML或注解的方式将Java对象与数据库中的记录进行映射&#xff0c;极大地简化了数据访问层的开发。而在MyBatis的核心组成部分中&#xff0c;配置文件扮演着举足轻重的角色。它不仅定义了MyBatis的运行环境&#xff0c;还配置了数据源、事务管理、映射器等关键元素&a…...

《深度揭秘:TPU张量计算架构如何重塑深度学习运算》

在深度学习领域&#xff0c;计算性能始终是推动技术发展的关键因素。从传统CPU到GPU&#xff0c;再到如今大放异彩的TPU&#xff08;张量处理单元&#xff09;&#xff0c;每一次硬件架构的革新都为深度学习带来了质的飞跃。今天&#xff0c;就让我们深入探讨TPU的张量计算架构…...

Java基础知识总结(二十二)--List接口

List本身是Collection接口的子接口&#xff0c;具备了Collection的所有方法。现在学习List体系特有的共性方法&#xff0c;查阅方法发现List的特有方法都有索引&#xff0c;这是该集合最大的特点。 List&#xff1a;有序(元素存入集合的顺序和取出的顺序一致)&#xff0c;元素都…...

[STM32 - 野火] - - - 固件库学习笔记 - - -十二.基本定时器

一、定时器简介 STM32 中的定时器&#xff08;TIM&#xff0c;Timer&#xff09;是其最重要的外设之一&#xff0c;广泛用于时间管理、事件计数和控制等应用。 1.1 基本功能 定时功能&#xff1a;TIM定时器可以对输入的时钟进行计数&#xff0c;并在计数值达到设定值时触发中…...

算法随笔_27:最大宽度坡

上一篇:算法随笔_26: 按奇偶排序数组-CSDN博客 题目描述如下: 给定一个整数数组 nums&#xff0c;坡是元组 (i, j)&#xff0c;其中 i < j 且 nums[i] < nums[j]。这样的坡的宽度为 j - i。 找出 nums 中的坡的最大宽度&#xff0c;如果不存在&#xff0c;返回 0 。 …...

无公网IP 外网访问本地部署 llamafile 大语言模型

llamafile 是一种AI大模型部署&#xff08;或者说运行&#xff09;的方案&#xff0c;它的特点就是可以将模型和运行环境打包成一个独立的可执行文件&#xff0c;这样就简化了部署流程。用户只需要下载并执行该文件&#xff0c;无需安装运行环境或依赖库&#xff0c;这大大提高…...

基于算法竞赛的c++编程(28)结构体的进阶应用

结构体的嵌套与复杂数据组织 在C中&#xff0c;结构体可以嵌套使用&#xff0c;形成更复杂的数据结构。例如&#xff0c;可以通过嵌套结构体描述多层级数据关系&#xff1a; struct Address {string city;string street;int zipCode; };struct Employee {string name;int id;…...

idea大量爆红问题解决

问题描述 在学习和工作中&#xff0c;idea是程序员不可缺少的一个工具&#xff0c;但是突然在有些时候就会出现大量爆红的问题&#xff0c;发现无法跳转&#xff0c;无论是关机重启或者是替换root都无法解决 就是如上所展示的问题&#xff0c;但是程序依然可以启动。 问题解决…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

高危文件识别的常用算法:原理、应用与企业场景

高危文件识别的常用算法&#xff1a;原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件&#xff0c;如包含恶意代码、敏感数据或欺诈内容的文档&#xff0c;在企业协同办公环境中&#xff08;如Teams、Google Workspace&#xff09;尤为重要。结合大模型技术&…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理&#xff1a;刘治强&#xff0c;浙江大学硕士生&#xff0c;研究方向为知识图谱表示学习&#xff0c;大语言模型 论文链接&#xff1a;http://arxiv.org/abs/2407.16127 发表会议&#xff1a;ISWC 2024 1. 动机 传统的知识图谱补全&#xff08;KGC&#xff09;模型通过…...

【AI学习】三、AI算法中的向量

在人工智能&#xff08;AI&#xff09;算法中&#xff0c;向量&#xff08;Vector&#xff09;是一种将现实世界中的数据&#xff08;如图像、文本、音频等&#xff09;转化为计算机可处理的数值型特征表示的工具。它是连接人类认知&#xff08;如语义、视觉特征&#xff09;与…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...