每日一道算法题
题目:最长递增子序列的个数
给定一个未排序的整数数组,找到最长递增子序列的个数。
示例 1
- 输入:
nums = [1,3,5,4,7] - 输出:
2 - 解释:有两个最长递增子序列,分别是
[1,3,4,7]和[1,3,5,7]。
示例 2
- 输入:
nums = [2,2,2,2,2] - 输出:
5 - 解释:最长递增子序列的长度是 1,并且存在 5 个长度为 1 的递增子序列,因此输出 5。
提示
1 <= nums.length <= 2000-10^6 <= nums[i] <= 10^6
解题思路提示
- 状态定义:
- 可以使用两个数组,
dp数组用来记录以每个位置结尾的最长递增子序列的长度,count数组用来记录以每个位置结尾的最长递增子序列的个数。
- 可以使用两个数组,
- 状态转移方程:
- 对于每个位置
i,遍历0到i - 1的位置j,如果nums[i] > nums[j],则可以更新dp[i]和count[i]。 - 更新
dp[i]:dp[i] = max(dp[i], dp[j] + 1)。 - 更新
count[i]:如果dp[i] == dp[j] + 1,则count[i] += count[j];如果dp[i] < dp[j] + 1,则count[i] = count[j]。
- 对于每个位置
- 最终结果:
- 遍历
dp数组找到最长递增子序列的长度maxLen。 - 再次遍历
count数组,将所有对应dp值为maxLen的count值累加起来,得到最长递增子序列的个数.
- 遍历
代码实现(Java):
/*** ClassName:LongestIncreasingSubsequenceCount** @Author 爱掉头发的小李* @Create 2025/1/26 15:46* @Version 1.0*/
public class LongestIncreasingSubsequenceCount {public int findNumberOfLIS(int[] nums) {// 如果数组为空,直接返回 0if (nums == null || nums.length == 0) {return 0;}int n = nums.length;// dp 数组用于记录以每个位置结尾的最长递增子序列的长度,初始值都为 1int[] dp = new int[n];// count 数组用于记录以每个位置结尾的最长递增子序列的个数,初始值都为 1int[] count = new int[n];// 初始化 dp 数组和 count 数组for (int i = 0; i < n; i++) {dp[i] = 1;count[i] = 1;}// 填充 dp 数组和 count 数组for (int i = 1; i < n; i++) {for (int j = 0; j < i; j++) {if (nums[i] > nums[j]) {// 如果当前元素可以接在前面的元素后面形成更长的递增子序列if (dp[j] + 1 > dp[i]) {dp[i] = dp[j] + 1;count[i] = count[j];} else if (dp[j] + 1 == dp[i]) {// 如果长度相同,累加个数count[i] += count[j];}}}}// 找到最长递增子序列的长度int maxLength = 0;for (int len : dp) {maxLength = Math.max(maxLength, len);}// 计算最长递增子序列的个数int result = 0;for (int i = 0; i < n; i++) {if (dp[i] == maxLength) {result += count[i];}}return result;}public static void main(String[] args) {LongestIncreasingSubsequenceCount solution = new LongestIncreasingSubsequenceCount();int[] nums = {1, 3, 5, 4, 7};System.out.println(solution.findNumberOfLIS(nums));}
}
代码说明:
-
初始化部分:
- 首先检查输入数组
nums是否为空或长度为 0,如果是则直接返回 0。 - 初始化
dp数组,将每个元素初始化为 1,因为每个元素自身可以构成一个长度为 1 的递增子序列。 - 初始化
count数组,同样将每个元素初始化为 1,表示以该元素结尾的长度为 1 的递增子序列的个数为 1。
- 首先检查输入数组
-
双重循环填充
dp和count数组:- 外层循环遍历数组中的每个元素,从索引 1 开始。
- 内层循环遍历当前元素之前的所有元素。
- 如果当前元素
nums[i]大于nums[j],说明可以将nums[i]接在以nums[j]结尾的递增子序列后面:- 如果
dp[j] + 1大于dp[i],则更新dp[i]为dp[j] + 1,并将count[i]更新为count[j],因为找到了更长的递增子序列。 - 如果
dp[j] + 1等于dp[i],说明找到了同样长度的递增子序列,将count[i]加上count[j]。
- 如果
-
计算最长递增子序列的长度:
- 遍历
dp数组,找到其中的最大值maxLength,即为最长递增子序列的长度。
- 遍历
-
计算最长递增子序列的个数:
- 再次遍历
dp数组,将所有dp[i]等于maxLength的count[i]累加起来,得到最长递增子序列的个数。
- 再次遍历
相关文章:
每日一道算法题
题目:最长递增子序列的个数 给定一个未排序的整数数组,找到最长递增子序列的个数。 示例 1 输入:nums [1,3,5,4,7]输出:2解释:有两个最长递增子序列,分别是 [1,3,4,7] 和 [1,3,5,7] 。 示例 2 输入&a…...
低代码系统-产品架构案例介绍、明道云(十一)
明道云HAP-超级应用平台(Hyper Application Platform),其实就是企业级应用平台,跟微搭类似。 通过自设计底层架构,兼容各种平台,使用低代码做到应用搭建、应用运维。 企业级应用平台最大的特点就是隐藏在冰山下的功能很深…...
论文笔记(六十三)Understanding Diffusion Models: A Unified Perspective(三)
Understanding Diffusion Models: A Unified Perspective(三) 文章概括 文章概括 引用: article{luo2022understanding,title{Understanding diffusion models: A unified perspective},author{Luo, Calvin},journal{arXiv preprint arXiv:…...
利用机器学习创建基于位置的推荐程序
推荐系统被广泛应用于不同的应用程序中,用于预测用户对产品或服务的偏好或评价。在过去的几分钟或几小时里,你很可能在网上遇到过或与某种类型的推荐系统进行过互动。这些推荐系统有不同的类型,其中最突出的包括基于内容的过滤和协作过滤。在…...
每日一题 429. N 叉树的层序遍历
429. N 叉树的层序遍历 /*class Solution { public:vector<vector<int>> levelOrder(Node* root) {queue<Node*> que;que.push(root);vector<vector<int>> ans;if(root nullptr){return ans;}while(!que.empty()){int sizeQue que.size();vec…...
AIP-132 标准方法:List
编号132原文链接AIP-132: Standard methods: List状态批准创建日期2019-01-21更新日期2022-06-02 在许多API中,通常会向集合URI(例如 /v1/publishers/1/books )发出GET请求,获取集合中资源的列表。 面向资源设计(AIP…...
CSAPP学习:前言
前言 本书简称CS:APP。 背景知识 一些基础的C语言知识 如何阅读 Do-做系统 在真正的系统上解决具体的问题,或是编写和运行程序。 章节 2025-1-27 个人认为如下章节将会对学习408中的操作系统与计算机组成原理提供帮助,于是先凭借记忆将其简单…...
【统计的思想】假设检验(二)
假设检验是根据人为设定的显著水平,对被测对象的总体质量特性进行统计推断的方法。 如果我们通过假设检验否定了零假设,只是说明在设定的显著水平下,零假设成立的概率比较小,并不是说零假设就肯定不成立。如果零假设事实上是成立…...
KNN算法学习实践
1.理论学习 原文链接 ShowMeAI知识社区 2.案例实践 假如一套房子打算出租,但不知道市场价格,可以根据房子的规格(面积、房间数量、厕所数量、容纳人数等),在已有数据集中查找相似(K近邻)规格…...
数据可视化的图表
1.折线图反映了一段时间内事物连续的动态变化规律,适用于描述一个变量随另一个变量变化的趋势,通常用于绘制连续数据,适合数据点较多的情况。 2.散点图是以直角坐标系中各点的密集程度和变化趋势来表示两种现象间的相关关系,常用于显示和比较数值。当要在不考虑时间…...
动手学深度学习-卷积神经网络-3填充和步幅
目录 填充 步幅 小结 在上一节的例子(下图) 中,输入的高度和宽度都为3,卷积核的高度和宽度都为2,生成的输出表征的维数为22。 正如我们在 上一节中所概括的那样,假设输入形状为nhnw,卷积核形…...
【JS|第28期】new Event():前端事件处理的利器
日期:2025年1月24日 作者:Commas 签名:(ง •_•)ง 积跬步以致千里,积小流以成江海…… 注释:如果您觉得有所帮助,帮忙点个赞,也可以关注我,我们一起成长;如果有不对的地方…...
Spring Boot 中的事件发布与监听:深入理解 ApplicationEventPublisher(附Demo)
目录 前言1. 基本知识2. Demo3. 实战代码 前言 🤟 找工作,来万码优才:👉 #小程序://万码优才/r6rqmzDaXpYkJZF 基本的Java知识推荐阅读: java框架 零基础从入门到精通的学习路线 附开源项目面经等(超全&am…...
【Spring】Spring启示录
目录 前言 一、示例程序 二、OCP开闭原则 三、依赖倒置原则DIP 四、控制反转IOC 总结 前言 在软件开发的世界里,随着项目的增长和需求的变化,如何保持代码的灵活性、可维护性和扩展性成为了每个开发者必须面对的问题。传统的面向过程或基于类的设计…...
ospf动态路由配置,cost路径调整,ospf认证实验
一、实验拓扑如图: 接口ip配置网络 :10.17.12.* 10.17.13.* ,10.17.23.* 回环接口配置分别为 10.0.1.1 ,10.0.1.2,10.0.1.3对应三台路由器 ar1配置接口ip interface GigabitEthernet0/0/0 ip address 10.17.12.1…...
在Rust应用中访问.ini格式的配置文件
在Rust应用中访问.ini格式的配置文件,你可以使用第三方库,比如 ini 或 config. 下面是一个使用 ini 库的示例,该库允许你读取和解析.ini文件。 使用 ini 库 添加依赖 首先,你需要在你的 Cargo.toml 文件中添加 ini 库的依赖&am…...
批量处理多个模型的预测任务
#!/bin/bash# 检查是否传入必要的参数,若未传入参数则打印用法并退出 if [ "$#" -lt 1 ]; thenecho "用法: $0 <file_path>"echo "示例: $0 /home/aistudio/work/PaddleSeg/city/cityscapes_urls_extracted.txt"exit 1 fi# 读取…...
Java 编程初体验
Java学习资料 Java学习资料 Java学习资料 一、引言 在当今数字化的时代,编程已然成为一项极具价值的技能。而 Java 作为一门广泛应用于企业级开发、移动应用、大数据等众多领域的编程语言,吸引着无数初学者投身其中。当我们初次踏入 Java 编程的世界&…...
element-plus 的table section如何实现单选
如果是单选那么全新的按钮应该隐藏或者不可编辑的状态。但是我没找到改变成不可编辑的方法,只能采取隐藏 <template><!-- 注意要包一层div根元素,否则css样式可能会不生效,原因不详 --><div><el-table ref"proTab…...
【JavaEE进阶】图书管理系统 - 壹
目录 🌲序言 🌴前端代码的引入 🎋约定前后端交互接口 🚩接口定义 🍃后端服务器代码实现 🚩登录接口 🚩图书列表接口 🎄前端代码实现 🚩登录页面 🚩…...
龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
高频面试之3Zookeeper
高频面试之3Zookeeper 文章目录 高频面试之3Zookeeper3.1 常用命令3.2 选举机制3.3 Zookeeper符合法则中哪两个?3.4 Zookeeper脑裂3.5 Zookeeper用来干嘛了 3.1 常用命令 ls、get、create、delete、deleteall3.2 选举机制 半数机制(过半机制࿰…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
C/C++ 中附加包含目录、附加库目录与附加依赖项详解
在 C/C 编程的编译和链接过程中,附加包含目录、附加库目录和附加依赖项是三个至关重要的设置,它们相互配合,确保程序能够正确引用外部资源并顺利构建。虽然在学习过程中,这些概念容易让人混淆,但深入理解它们的作用和联…...
[大语言模型]在个人电脑上部署ollama 并进行管理,最后配置AI程序开发助手.
ollama官网: 下载 https://ollama.com/ 安装 查看可以使用的模型 https://ollama.com/search 例如 https://ollama.com/library/deepseek-r1/tags # deepseek-r1:7bollama pull deepseek-r1:7b改token数量为409622 16384 ollama命令说明 ollama serve #:…...
