当前位置: 首页 > news >正文

特种作业操作之低压电工考试真题


1.下面( )属于顺磁性材料。
A. 铜
B. 水
C. 空气
答案:C

2.事故照明一般采用( )。
A. 日光灯
B. 白炽灯
C. 压汞灯
答案:B

3.人体同时接触带电设备或线路中的两相导体时,电流从一相通过人体流入另一相,这种触电现象称为( )触电。
A. 单相
B. 两相
C. 感应电
答案:B

4.人的室颤电流约为( )mA。
A. 30
B. 16
C. 50
答案:C

5.从制造角度考虑,低压电器是指在交流 50Hz、额定电压( )V 或直流额定电压 1500V 及以下电气设备。
A. 800
B. 400
C. 1000
答案:C

6.使用剥线钳时应选用比导线直径( )的刃口。
A. 相同
B. 稍大
C. 较大
答案:B

7.具有反时限安秒特性的元件就具备短路保护和( )保护能力。
A. 机械
B. 温度
C. 过载
答案:C

8.几种线路同杆架设时,必须保证高压线路在低压线路( )。
A. 右方
B. 左方
C. 上方
答案:C

9.在一个闭合回路中,电流强度与电源电动势成正比,与电路中内电阻和外电阻之和成反比,这一定律称( )。
A. 全电路欧姆定律
B. 全电路电流定律
C. 部分电路欧姆定律
答案:A

相关文章:

特种作业操作之低压电工考试真题

1.下面( )属于顺磁性材料。 A. 铜 B. 水 C. 空气 答案:C 2.事故照明一般采用( )。 A. 日光灯 B. 白炽灯 C. 压汞灯 答案:B 3.人体同时接触带电设备或线路中的两相导体时,电流从一相通过人体流…...

[免费]基于Python的Django博客系统【论文+源码+SQL脚本】

大家好,我是java1234_小锋老师,看到一个不错的基于Python的Django博客系统,分享下哈。 项目视频演示 【免费】基于Python的Django博客系统 Python毕业设计_哔哩哔哩_bilibili 项目介绍 随着互联网技术的飞速发展,信息的传播与…...

Cannot resolve symbol ‘XXX‘ Maven 依赖问题的解决过程

一、问题描述 在使用 Maven 管理项目依赖时,遇到了一个棘手的问题。具体表现为:在 pom.xml 文件中导入了所需的依赖,并且在 IDE 中导入语句没有显示为红色(表示 IDE 没有提示依赖缺失),但是在实际使用这些依…...

我们需要有哪些知识体系,知识体系里面要有什么哪些内容?

01、管理知识体系的学习知识体系 主要内容: 1、知识管理框架的外部借鉴、和自身知识体系的搭建; 2、学习能力、思维逻辑能力等的塑造; 3、知识管理工具的使用; 4、学习资料的导入和查找资料的渠道; 5、深层关键的…...

什么是vue.js组件开发,我们需要做哪些准备工作?

Vue.js 是一个非常流行的前端框架,用于构建用户界面。组件开发是 Vue.js 的核心概念之一,通过将界面拆分为独立的组件,可以提高代码的可维护性和复用性。以下是一个详细的 Vue.js 组件开发指南,包括基础概念、开发流程和代码示例。 一、Vue.js 组件开发基础 1. 组件的基本…...

网络工程师 (3)指令系统基础

一、寻址方式 (一)指令寻址 顺序寻址:通过程序计数器(PC)加1,自动形成下一条指令的地址。这是计算机中最基本、最常用的寻址方式。 跳跃寻址:通过转移类指令直接或间接给出下一条指令的地址。跳…...

第4章 神经网络【1】——损失函数

4.1.从数据中学习 实际的神经网络中,参数的数量成千上万,因此,需要由数据自动决定权重参数的值。 4.1.1.数据驱动 数据是机器学习的核心。 我们的目标是要提取出特征量,特征量指的是从输入数据/图像中提取出的本质的数 …...

【Python】第五弹---深入理解函数:从基础到进阶的全面解析

✨个人主页: 熬夜学编程的小林 💗系列专栏: 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】【MySQL】【Python】 目录 1、函数 1.1、函数是什么 1.2、语法格式 1.3、函数参数 1.4、函数返回值 1.5、变量作用域 1.6、函数…...

【MQ】如何保证消息队列的高性能?

零拷贝 Kafka 使用到了 mmap 和 sendfile 的方式来实现零拷贝。分别对应 Java 的 MappedByteBuffer 和 FileChannel.transferTo 顺序写磁盘 Kafka 采用顺序写文件的方式来提高磁盘写入性能。顺序写文件,基本减少了磁盘寻道和旋转的次数完成一次磁盘 IO&#xff0…...

RAG是否被取代(缓存增强生成-CAG)吗?

引言: 本文深入研究一种名为缓存增强生成(CAG)的新技术如何工作并减少/消除检索增强生成(RAG)弱点和瓶颈。 LLMs 可以根据输入给他的信息给出对应的输出,但是这样的工作方式很快就不能满足应用的需要: 因…...

用C++编写一个2048的小游戏

以下是一个简单的2048游戏的实现。这个实现使用了控制台输入和输出,适合在终端或命令行环境中运行。 2048游戏的实现 1.游戏逻辑 2048游戏的核心逻辑包括: • 初始化一个4x4的网格。 • 随机生成2或4。 • 处理玩家的移动操作(上、下、左、…...

为何SAP S4系统中要设置MRP区域?MD04中可否同时显示工厂级、库存地点级的数据?

【SAP系统PP模块研究】 一、物料主数据的MRP区域设置 SAP ECC系统中想要指定不影响MRP运算的库存地点,是针对库存地点设置MRP标识,路径为:SPRO->生产->物料需求计划->计划->定义每一个工厂的存储地点MRP,如下图所示: 另外,在给物料主数据MMSC扩充库存地点时…...

Windows10官方系统下载与安装保姆级教程【U盘-官方ISO直装】

Windows 10 官方系统安装/重装 制作启动盘的U盘微软官网下载Win10安装包创建启动盘U盘 安装Win10 本文采用U盘安装Windows10官方系统。 制作启动盘的U盘 微软官网下载Win10安装包 微软官网下载Win10安装包链接:https://www.microsoft.com/zh-cn/software-downloa…...

第05章 07 切片图等值线代码一则

绘制脑部切面图的阈值等值线是一个常见的任务,通常涉及使用VTK(Visualization Toolkit)库来处理医学图像数据。以下是一个基于VTK/C的示例代码,展示如何读取脑部DICOM图像数据,应用阈值过滤器来提取特定组织的等值线&a…...

【深度学习】线性回归的简洁实现

线性回归的简洁实现 在过去的几年里,出于对深度学习强烈的兴趣,许多公司、学者和业余爱好者开发了各种成熟的开源框架。 这些框架可以自动化基于梯度的学习算法中重复性的工作。 目前,我们只会运用: (1)通…...

渗透测试技法之口令安全

一、口令安全威胁 口令泄露途径 代码与文件存储不当:在软件开发和系统维护过程中,开发者可能会将口令以明文形式存储在代码文件、配置文件或注释中。例如,在开源代码托管平台 GitHub 上,一些开发者由于疏忽,将包含数据…...

【R语言】数学运算

一、基础运算 R语言中能实现加、减、乘、除、求模、取整、取绝对值、指数、对数等运算。 x <- 2 y <- 10 # 求模 y %% x # 整除 y %/% x # 取绝对值 abs(-x) # 指数运算 y ^x y^1/x #对数运算 log(x) #log()函数默认情况下以 e 为底 双等号“”的作用等同于identical(…...

小游戏源码开发搭建技术栈和服务器配置流程

近些年各种场景小游戏开发搭建版本层出不穷,山东布谷科技拥有多年海内外小游戏源码开发经验&#xff0c;现为从事小游戏源码开发或游戏运营的朋友们详细介绍小游戏开发及服务器配置流程。 一、可以对接到app的小游戏是如何开发的 1、小游戏源码开发的需求分析&#xff1a; 明…...

深度学习|表示学习|卷积神经网络|输出维度公式|15

如是我闻&#xff1a; 在卷积和池化操作中&#xff0c;计算输出维度的公式是关键&#xff0c;它们分别可以帮助我们计算卷积操作和池化操作后的输出大小。下面分别总结公式&#xff0c;并结合解释它们的意义&#xff1a; 1. 卷积操作的输出维度公式 当我们对输入图像进行卷积时…...

cpp智能指针

普通指针的不足 new和new[]的内存需要用delete和deletel]释放。 程序员的主观失误&#xff0c;忘了或漏了释放。 程序员也不确定何时释放。 普通指针的释放 类内的指针&#xff0c;在析构函数中释放。 C内置数据类型&#xff0c;如何释放? new出来的类&#xff0c;本身如…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

Axios请求超时重发机制

Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式&#xff1a; 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

OpenLayers 分屏对比(地图联动)

注&#xff1a;当前使用的是 ol 5.3.0 版本&#xff0c;天地图使用的key请到天地图官网申请&#xff0c;并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能&#xff0c;和卷帘图层不一样的是&#xff0c;分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习

禁止商业或二改转载&#xff0c;仅供自学使用&#xff0c;侵权必究&#xff0c;如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

GruntJS-前端自动化任务运行器从入门到实战

Grunt 完全指南&#xff1a;从入门到实战 一、Grunt 是什么&#xff1f; Grunt是一个基于 Node.js 的前端自动化任务运行器&#xff0c;主要用于自动化执行项目开发中重复性高的任务&#xff0c;例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...

uniapp 字符包含的相关方法

在uniapp中&#xff0c;如果你想检查一个字符串是否包含另一个子字符串&#xff0c;你可以使用JavaScript中的includes()方法或者indexOf()方法。这两种方法都可以达到目的&#xff0c;但它们在处理方式和返回值上有所不同。 使用includes()方法 includes()方法用于判断一个字…...