python实现dbscan
python实现dbscan
原理
DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形状的聚类。
DBSCAN中的几个定义:
- Ε邻域:给定对象半径为Ε内的区域称为该对象的Ε邻域;
- 核心对象:如果给定对象Ε邻域内的样本点数大于等于MinPts,则称该对象为核心对象;
DBSCAN 算法步骤
- 初始化:
从数据集中任意选择一个点 p,判断它是否为核心点(即 ε 邻域内是否包含至少 minPts 个点)。 - 扩展簇:
如果 p 是核心点,则开始一个新簇,将 p 及其邻域中的点加入簇中,并不断对新的核心点的邻域进行扩展。 - 处理噪声点:
如果一个点既不在任何簇中,也不满足成为核心点的条件,则将其标记为噪声点。 - 重复处理:
继续检查所有未访问的点,直到所有点都被访问为止。
python实现
从大神哪里复制过来的代码
https://github.com/lansinuote/Machine-Learning-In-Numpy/blob/master/%E6%97%A0%E7%9B%91%E7%9D%A3%E7%AF%87/5.DBSCAN/1.DBSCAN.ipynb
from sklearn.datasets import make_moons
from matplotlib import pyplot as pltimport numpy as np#加载数据
x, y = make_moons(n_samples=300, noise=0.05, random_state=42)
print(type(x))print(x)
x[0,0] = 2
x[0,1] = 2def my_dbscan(x, eps, minpts):#被访问过的放这里visited = []#被分组过的放这里grouped = []#分组结果groups = []#求一个点周围的邻居def get_neighbors(xi):diff = x - xidiff = diff**2diff = diff.sum(axis=1)diff = diff**0.5#这里的eps是超参数,是画圆的半径index = diff <= epsreturn np.where(index)[0]#获取一个没有访问过的x索引def get_unvisited_idx():for i in range(len(x)):if i not in visited:return ireturn None#从一个中心点开始扩散成一个组def build_group(i, group):#如果一个点已经被访问过,则不进行任何计算if i in visited:return#标记这个点已经被访问过了visited.append(i)#获取这个点所有的邻居neighbors = get_neighbors(x[i])#如果邻居数小于minpts,说明不是中心点,不进行任何计算if len(neighbors) < minpts:return#如果是中心点,把它加入到组中if i not in grouped:group.append(i)grouped.append(i)#遍历中心点的所有邻居,如果在它的邻居中也有中心点,则扩散for j in neighbors:#如果邻居还没有被分过组,则归入中心点的组if j not in grouped:group.append(j)grouped.append(j)build_group(j, group)#遍历直到所有点被访问while True:i = get_unvisited_idx()if i == None:break#每次重新开始扩散,是一个新的组group = []build_group(i, group)if group:groups.append(group)#结果画图predict = -1 * np.ones(len(x)) # 没有分簇的都是-1分类for i in range(len(groups)):predict[groups[i]] = ireturn predictpredict = my_dbscan(x, 0.25, 5)print(predict)
plt.scatter(x[:, 0], x[:, 1], c=predict)
plt.show()
相关文章:

python实现dbscan
python实现dbscan 原理 DBSCAN(Density-Based Spatial Clustering of Applications with Noise)是一个比较有代表性的基于密度的聚类算法。它将簇定义为密度相连的点的最大集合,能够把具有足够高密度的区域划分为簇,并可在噪声的空间数据库中发现任意形…...

学习数据结构(3)顺序表
1.动态顺序表的实现 (1)初始化 (2)扩容 (3)头部插入 (4)尾部插入 (5)头部删除 (这里注意要保证有效数据个数不为0) (6&a…...
正在更新丨豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)
文章目录 豆瓣电影详细数据的采集与可视化分析(scrapy+mysql+matplotlib+flask)写在前面数据采集0.注意事项1.创建Scrapy项目`douban2025`2.用`PyCharm`打开项目3.创建爬虫脚本`douban.py`4.修改`items.py`的代码5.修改`pipelines.py`代码6.修改`settings.py`代码7.启动`doub…...

wx043基于springboot+vue+uniapp的智慧物流小程序
开发语言:Java框架:springbootuniappJDK版本:JDK1.8服务器:tomcat7数据库:mysql 5.7(一定要5.7版本)数据库工具:Navicat11开发软件:eclipse/myeclipse/ideaMaven包&#…...
每日一题 430. 扁平化多级双向链表
430. 扁平化多级双向链表 简单 /*class Solution { public:Node* flatten(Node* head) {Node* tail nullptr;return dfs(head);}Node* dfs(Node* head){Node* cur head;while(cur ! nullptr){if(cur->child ! nullptr){Node* curChild getTail(cur->child);Node* te…...
UE学习日志#14 GAS--ASC源码简要分析10 GC相关
注:1.这个分类是按照源码里的注释分类的 2.本篇是通读并给出一些注释形式的,并不涉及结构性的分析 3.看之前要对UE的GAS系统的定义有初步了解 4.因为都是接口函数,有些没细看的研究那一部分的时候会细看 1 一些接口函数,但是…...

使用Python和Qt6创建GUI应用程序--关于Qt的一点介绍
关于Qt的一点介绍 Qt是一个免费的开源部件工具包,用于创建跨平台GUI应用程序,允许应用程序从Windows瞄准多个平台,macOS, Linux和Android的单一代码库。但是Qt不仅仅是一个Widget工具箱和功能内置支持多媒体,数据库&am…...
C#@符号在string.Format方法中作用
本文详解@符号在string.Format方法中作用。...
Next.js 14 TS 中使用jwt 和 App Router 进行管理
jwt是一个很基础的工作。但是因为架构不一样,就算是相同的架构,版本不一样,加jwt都会有一定的差别。现在我们的项目是Next.js 14 TS 的 App Router项目(就是没有pages那种),添加jwt的步骤: 1、…...
【贪心算法】洛谷P1090 合并果子 / [USACO06NOV] Fence Repair G
2025 - 01 - 21 - 第 45 篇 【洛谷】贪心算法题单 -【 贪心算法】 - 【学习笔记】 作者(Author): 郑龙浩 / 仟濹(CSND账号名) 洛谷 P1090[NOIP2004 提高组] 合并果子 / [USACO06NOV] Fence Repair G 【贪心算法】 文章目录 洛谷 P1090[NOIP2004 提高组] 合并果子 / [USACO06…...

Windows11无法打开Windows安全中心主界面
# 问题描述 安全中心无法打卡主界面,并弹出“需要使用新应用以打开此windowsdefender连接”. 解决方法 以管理员权限打开PowerShell,推荐使用快捷键win x打开快捷界面,选择Windows终端(管理员),并在终…...
下载arm架构的deb包的方法
在ARM板上操作 如果你是在arm板上使用apt安装和下载包,那么安装过的包会在以下路径里: /var/cache/apt/archives只需要复制出来就可以 如果只下载不安装,可以使用命令 sudo apt-get -d install package_name:arm64 # 如果是32位࿰…...
【Day29 LeetCode】动态规划DP
一、动态规划DP 1、不同路径 62 首先是dp数组,dp[i][j]表示从起点(0, 0)到达当前位置(i, j)的路径数,转移方程从只能向下和向右移动可知,初始化边界可直观推出第一行和第一列上的位置只有一条路径。 class Solution { public:int uniquePa…...

5分钟带你获取deepseek api并搭建简易问答应用
目录 1、获取api 2、获取base_url和chat_model 3、配置模型参数 方法一:终端中临时将加入 方法二:创建.env文件 4、 配置client 5、利用deepseek大模型实现简易问答 deepseek-v3是截止博文撰写之日,无论是国内还是国际上发布的大模型中…...
LeetCode题练习与总结:最短无序连续子数组--581
一、题目描述 给你一个整数数组 nums ,你需要找出一个 连续子数组 ,如果对这个子数组进行升序排序,那么整个数组都会变为升序排序。 请你找出符合题意的 最短 子数组,并输出它的长度。 示例 1: 输入:num…...
探秘 TCP TLP:从背景到实现
回家的路上还讨论了个关于 TCP TLP 的问题,闲着无事缕一缕。本文内容参考自 Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses 以及 Linux 内核源码。 TLP,先说缘由。自 TCP 引入 Fast retrans 机制就是为了尽力避免 RTO…...

linux学习之网络编程
一、两个模型及其对应关系 OSI七层模型 TCP/IP 四层模型 -------------------------------------------------------------------------- 应用层 表示层 ----> …...
scrol家族 offset家族 client家族学习
Scroll 系列属性 scrollTop & scrollLeft scrollTop: 返回元素的内容已向上滚动的部分的高度。scrollLeft: 返回元素的内容已向左滚动的部分的宽度。 scrollHeight & scrollWidth scrollHeight: 返回元素的实际高度,包括由于溢出而在屏幕上不可见的内容…...
css-background-color(transparent)
1.前言 在 CSS 中,background-color 属性用于设置元素的背景颜色。除了基本的颜色值(如 red、blue 等)和十六进制颜色值(如 #FF0000、#0000FF 等),还有一些特殊的属性值可以用来设置背景颜色。 2.backgrou…...

如何将xps文件转换为txt文件?xps转为pdf,pdf转为txt,提取pdf表格并转为txt
文章目录 xps转txt方法一方法二 pdf转txt整页转txt提取pdf表格,并转为txt 总结另外参考XPS文件转换为TXT文件XPS文件转换为PDF文件PDF文件转换为TXT文件提取PDF表格并转为TXT示例代码(部分) 本文测试代码已上传,路径如下ÿ…...

7.4.分块查找
一.分块查找的算法思想: 1.实例: 以上述图片的顺序表为例, 该顺序表的数据元素从整体来看是乱序的,但如果把这些数据元素分成一块一块的小区间, 第一个区间[0,1]索引上的数据元素都是小于等于10的, 第二…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

RocketMQ延迟消息机制
两种延迟消息 RocketMQ中提供了两种延迟消息机制 指定固定的延迟级别 通过在Message中设定一个MessageDelayLevel参数,对应18个预设的延迟级别指定时间点的延迟级别 通过在Message中设定一个DeliverTimeMS指定一个Long类型表示的具体时间点。到了时间点后…...
可靠性+灵活性:电力载波技术在楼宇自控中的核心价值
可靠性灵活性:电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中,电力载波技术(PLC)凭借其独特的优势,正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据,无需额外布…...

(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...

【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
质量体系的重要
质量体系是为确保产品、服务或过程质量满足规定要求,由相互关联的要素构成的有机整体。其核心内容可归纳为以下五个方面: 🏛️ 一、组织架构与职责 质量体系明确组织内各部门、岗位的职责与权限,形成层级清晰的管理网络…...

Cloudflare 从 Nginx 到 Pingora:性能、效率与安全的全面升级
在互联网的快速发展中,高性能、高效率和高安全性的网络服务成为了各大互联网基础设施提供商的核心追求。Cloudflare 作为全球领先的互联网安全和基础设施公司,近期做出了一个重大技术决策:弃用长期使用的 Nginx,转而采用其内部开发…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现录音机应用
1. 项目配置与权限设置 1.1 配置module.json5 {"module": {"requestPermissions": [{"name": "ohos.permission.MICROPHONE","reason": "录音需要麦克风权限"},{"name": "ohos.permission.WRITE…...
Android第十三次面试总结(四大 组件基础)
Activity生命周期和四大启动模式详解 一、Activity 生命周期 Activity 的生命周期由一系列回调方法组成,用于管理其创建、可见性、焦点和销毁过程。以下是核心方法及其调用时机: onCreate() 调用时机:Activity 首次创建时调用。…...