当前位置: 首页 > news >正文

JUC--ConcurrentHashMap底层原理

ConcurrentHashMap底层原理

  • ConcurrentHashMap
    • JDK1.7
      • 底层结构
      • 线程安全底层具体实现
    • JDK1.8
      • 底层结构
      • 线程安全底层具体实现
    • 总结
      • JDK 1.7 和 JDK 1.8实现有什么不同?
      • ConcurrentHashMap 中的 CAS 应用

ConcurrentHashMap

ConcurrentHashMap 是一种线程安全的高效Map集合

底层数据结构:

  • JDK1.7底层采用分段的数组+链表实现
  • JDK1.8 采用的数据结构跟HashMap1.8的结构一样,数组+链表/红黑二叉树。

JDK1.7

底层结构

image-20250128100021706

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成。

Segment 数组中的每个元素包含一个 HashEntry 数组,每个 HashEntry 数组属于链表结构。

线程安全底层具体实现

image-20250128101358835

首先将数据分为一段一段(这个“段”就是 Segment)的存储,然后给每一段数据配一把锁,当一个线程占用锁访问其中一个段数据时,其他段的数据也能被其他线程访问。

ConcurrentHashMap 是由 Segment 数组结构和 HashEntry 数组结构组成

Segment 继承了 ReentrantLock,所以 Segment 是一种可重入锁,扮演锁的角色。HashEntry 用于存储键值对数据。

static class Segment<K,V> extends ReentrantLock implements Serializable {
}

一个 ConcurrentHashMap 里包含一个 Segment 数组,Segment 的个数一旦初始化就不能改变Segment 数组的大小默认是 16,也就是说默认可以同时支持 16 个线程并发写。

Segment 的结构和 HashMap 类似,是一种数组和链表结构,一个 Segment 包含一个 HashEntry 数组,每个 HashEntry 是一个链表结构的元素,每个 Segment 守护着一个 HashEntry 数组里的元素,当对 HashEntry 数组的数据进行修改时,必须首先获得对应的 Segment 的锁。也就是说,对同一 Segment 的并发写入会被阻塞,不同 Segment 的写入是可以并发执行的。

JDK1.8

底层结构

image-20250128101023428

JDK1.8 的 ConcurrentHashMap 不再是 Segment 数组 + HashEntry 数组 + 链表,而是 Node 数组 + 链表 / 红黑树。不过,Node 只能用于链表的情况,红黑树的情况需要使用 TreeNode。当冲突链表达到一定长度时,链表会转换成红黑树。

线程安全底层具体实现

ConcurrentHashMap 取消了 Segment 分段锁,采用 Node + CAS + synchronized 来保证并发安全。数据结构跟 HashMap 1.8 的结构类似,数组+链表/红黑二叉树。Java 8 在链表长度超过一定阈值(8)时将链表(寻址时间复杂度为 O(N))转换为红黑树(寻址时间复杂度为 O(log(N)))。

Java 8 中,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点,这样只要 hash 不冲突,就不会产生并发,就不会影响其他 Node 的读写,效率大幅提升。

底层源码:

image-20241223164349469

public V put(K key, V value) {return putVal(key, value, false);
}/** Implementation for put and putIfAbsent */
final V putVal(K key, V value, boolean onlyIfAbsent) {// key 和 value 不能为空if (key == null || value == null) throw new NullPointerException();int hash = spread(key.hashCode());int binCount = 0;for (Node<K,V>[] tab = table;;) {// f = 目标位置元素Node<K,V> f; int n, i, fh;// fh 后面存放目标位置的元素 hash 值if (tab == null || (n = tab.length) == 0)// 数组桶为空,初始化数组桶(自旋+CAS)tab = initTable();else if ((f = tabAt(tab, i = (n - 1) & hash)) == null) {// 桶内为空,CAS 放入,不加锁,成功了就直接 break 跳出if (casTabAt(tab, i, null,new Node<K,V>(hash, key, value, null)))break;  // no lock when adding to empty bin}else if ((fh = f.hash) == MOVED)tab = helpTransfer(tab, f);else {V oldVal = null;// 使用 synchronized 加锁加入节点synchronized (f) {if (tabAt(tab, i) == f) {// 说明是链表if (fh >= 0) {binCount = 1;// 循环加入新的或者覆盖节点for (Node<K,V> e = f;; ++binCount) {K ek;if (e.hash == hash &&((ek = e.key) == key ||(ek != null && key.equals(ek)))) {oldVal = e.val;if (!onlyIfAbsent)e.val = value;break;}Node<K,V> pred = e;if ((e = e.next) == null) {pred.next = new Node<K,V>(hash, key,value, null);break;}}}else if (f instanceof TreeBin) {// 红黑树Node<K,V> p;binCount = 2;if ((p = ((TreeBin<K,V>)f).putTreeVal(hash, key,value)) != null) {oldVal = p.val;if (!onlyIfAbsent)p.val = value;}}}}if (binCount != 0) {if (binCount >= TREEIFY_THRESHOLD)treeifyBin(tab, i);if (oldVal != null)return oldVal;break;}}}addCount(1L, binCount);return null;
}

工作步骤:

  1. 初始化,使用 cas 来保证并发安全,懒惰初始化 table
  2. 树化,当 table.length < 64 时,先尝试扩容,超过 64 时,并且 bin.length > 8 时,会将链表树化,树化过程会用 synchronized 锁住链表头
    说明:锁住某个槽位的对象头,是一种很好的细粒度的加锁方式,类似 MySQL 中的行锁
  3. put,如果该 bin 尚未创建,只需要使用 cas 创建 bin;如果已经有了,锁住链表头进行后续 put操作,元素添加至 bin 的尾部
  4. get,无锁操作仅需要保证可见性,扩容过程中 get 操作拿到的是 ForwardingNode 会让 get 操作在新 table 进行搜索
  5. 扩容,扩容时以 bin 为单位进行,需要对 bin 进行 synchronized,但这时其它竞争线程也不是无事可做,它们会帮助把其它 bin 进行扩容
  6. size,元素个数保存在 baseCount 中,并发时的个数变动保存在 CounterCell[] 当中,最后统计数量时累加

总结

JDK 1.7 和 JDK 1.8实现有什么不同?

  • 线程安全实现方式:JDK 1.7 采用 Segment 分段锁来保证安全, Segment 是继承自 ReentrantLock。JDK1.8 放弃了 Segment 分段锁的设计,采用 Node + CAS + synchronized 保证线程安全,锁粒度更细,synchronized 只锁定当前链表或红黑二叉树的首节点。
  • Hash 碰撞解决方法 : JDK 1.7 采用拉链法,JDK1.8 采用拉链法结合红黑树(链表长度超过一定阈值时,将链表转换为红黑树)。
  • 并发度:JDK 1.7 最大并发度是 Segment 的个数,默认是 16。JDK 1.8 最大并发度是 Node 数组的大小,并发度更大。

ConcurrentHashMap 中的 CAS 应用

ConcurrentHashMap 是 Java 中高效的并发集合类,它通过结合使用 CAS 和 synchronized 来保证线程安全性。

  • CAS:用于在没有锁的情况下保证单个桶(bucket)中的线程安全更新,尤其是 putIfAbsent()replace() 等操作。每个桶内部通常是通过 CAS 来完成插入、删除和更新操作,减少了全表锁定的情况,提高了性能。

    示例: 在 ConcurrentHashMapputIfAbsent 方法中,CAS 用来判断当前桶内是否已有值,如果没有,则将新值插入。

    void putIfAbsent(K key, V value) {int hash = hash(key);Node<K,V> node = table[hash & (table.length - 1)];// 使用 CAS 保证插入操作的线程安全if (node == null || cas(node, null, value)) {return value;}return null;
    }
    
  • synchronized:在一些较为复杂的操作(比如扩容、迭代器遍历时)中,仍然使用 synchronized 来保证线程安全。

通过这样的组合,ConcurrentHashMap 既能避免在并发情况下对整个数据结构加锁,提高效率,又能在需要的时候通过 synchronized 保证一致性。

相关文章:

JUC--ConcurrentHashMap底层原理

ConcurrentHashMap底层原理 ConcurrentHashMapJDK1.7底层结构线程安全底层具体实现 JDK1.8底层结构线程安全底层具体实现 总结JDK 1.7 和 JDK 1.8实现有什么不同&#xff1f;ConcurrentHashMap 中的 CAS 应用 ConcurrentHashMap ConcurrentHashMap 是一种线程安全的高效Map集合…...

【2024年华为OD机试】(C卷,200分)- 推荐多样性 (JavaScriptJava PythonC/C++)

一、问题描述 问题描述 我们需要从多个已排序的列表中选取元素,以填充多个窗口。每个窗口需要展示一定数量的元素,且元素的选择需要遵循特定的穿插策略。具体来说,我们需要: 从第一个列表中为每个窗口选择一个元素,然后从第二个列表中为每个窗口选择一个元素,依此类推。…...

【教学类-89-01】20250127新年篇01—— 蛇年红包(WORD模版)

祈愿在2025蛇年里&#xff0c; 伟大的祖国风调雨顺、国泰民安、每个人齐心协力&#xff0c;共同经历这百年未有之大变局时代&#xff08;国际政治、AI技术……&#xff09; 祝福亲友同事孩子们平安健康&#xff08;安全、安全、安全&#xff09;、巳巳如意&#xff01; 背景需…...

[权限提升] 操作系统权限介绍

关注这个专栏的其他相关笔记&#xff1a;[内网安全] 内网渗透 - 学习手册-CSDN博客 权限提升简称提权&#xff0c;顾名思义就是提升自己在目标系统中的权限。现在的操作系统都是多用户操作系统&#xff0c;用户之间都有权限控制&#xff0c;我们通过 Web 漏洞拿到的 Web 进程的…...

DeepSeek异军突起,重塑AI格局

DeepSeek异军突起&#xff0c;重塑AI格局这两天AI 圈发生了比过年更令人兴奋的事情&#xff0c;“Meta内部反水事件”、“黄仁勋的底盘问题”&#xff0c;以及AI格局的大动荡&#xff0c;一切都是因为那个叫DeepSeek的“中国自主AI”&#xff01;它由幻方量化开发&#xff0c;以…...

git的理解与使用

本地的git git除了最经典的add commit push用来做版本管理&#xff0c;其实他的分支管理也非常强大 可以说你学好了分支管理&#xff0c;就可以完成团队的配合协作了 git仓库 我们可以使用git init来初始化一个git仓库&#xff0c;只要能看见.git文件夹&#xff0c;就代表这…...

Baklib打造内容中台新模式助力企业智能化升级

内容概要 在如今数字化日渐渗透各个行业的背景下&#xff0c;内容中台逐渐成为推动企业智能化转型的重要工具。内容中台不仅仅是一个信息管理平台&#xff0c;更是一个整合多种内容资源&#xff0c;提升企业反应能力与市场适应力的创新模式。随着数据量的激增&#xff0c;传统…...

STM32完全学习——RT-thread在STM32F407上移植

一、写在前面 关于源码的下载&#xff0c;以及在KEIL工程里面添加操作系统的源代码&#xff0c;这里就不再赘述了。需要注意的是RT-thread默认里面是会使用串口的&#xff0c;因此需要额外的进行串口的初始化&#xff0c;有些人可能会问&#xff0c;为什么不直接使用CubMAX直接…...

基于51单片机和ESP8266(01S)、LCD1602、DS1302、独立按键的WiFi时钟

目录 系列文章目录前言一、效果展示二、原理分析三、各模块代码1、延时2、定时器03、串口通信4、DS13025、LCD16026、独立按键 四、主函数总结 系列文章目录 前言 之前做了一个WiFi定时器时钟&#xff0c;用八位数码管进行显示&#xff0c;但是定时器时钟的精度较低&#xff0…...

启元世界(Inspir.ai)技术浅析(二):深度强化学习

深度强化学习(Deep Reinforcement Learning, DRL)是启元世界在人工智能领域的一项核心技术,广泛应用于游戏AI、智能决策等领域。 一、状态(State) 1.1 概念与作用 **状态(State)**是指智能体对环境的感知,是智能体进行决策的基础。在深度强化学习中,状态通常是一个高…...

LeetCode100之子集(78)--Java

1.问题描述 给你一个整数数组 nums &#xff0c;数组中的元素 互不相同 。返回该数组所有可能的 子集&#xff08;幂集&#xff09;。 解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。 示例1 输入&#xff1a;nums [1,2,3]输出&#xff1a;[[],[1],[2],[1,2],[3],[1…...

React第二十五章(受控组件/非受控组件)

React 受控组件理解和应用 React 受控组件 受控组件一般是指表单元素&#xff0c;表单的数据由React的 State 管理&#xff0c;更新数据时&#xff0c;需要手动调用setState()方法&#xff0c;更新数据。因为React没有类似于Vue的v-model&#xff0c;所以需要自己实现绑定事件…...

使用 Confluent Cloud 的 Elasticsearch Connector 部署 Elastic Agent

作者&#xff1a;来自 Elastic Nima Rezainia Confluent Cloud 用户现在可以使用更新后的 Elasticsearch Sink Connector 与 Elastic Agent 和 Elastic Integrations 来实现完全托管且高度可扩展的数据提取架构。 Elastic 和 Confluent 是关键的技术合作伙伴&#xff0c;我们很…...

嵌入式知识点总结 Linux驱动 (三)-文件系统

针对于嵌入式软件杂乱的知识点总结起来&#xff0c;提供给读者学习复习对下述内容的强化。 目录 1.什么是文件系统&#xff1f; 2.根文件系统为什么这么重要&#xff1f;​编辑 3.可执行映像文件通常由几部分构成&#xff0c;他们有什么特点&#xff1f; 1.什么是文件系统&a…...

【知识】可视化理解git中的cherry-pick、merge、rebase

转载请注明出处&#xff1a;小锋学长生活大爆炸[xfxuezhagn.cn] 如果本文帮助到了你&#xff0c;欢迎[点赞、收藏、关注]哦~ 这三个确实非常像&#xff0c;以至于对于初学者来说比较难理解。 总结对比 先给出对比&#xff1a; 特性git mergegit rebasegit cherry-pick功能合并…...

【deepseek】deepseek-r1本地部署-第二步:huggingface.co替换为hf-mirror.com国内镜像

一、背景 由于国际镜像国内无法直接访问&#xff0c;会导致搜索模型时加载失败&#xff0c;如下&#xff1a; 因此需将国际地址替换为国内镜像地址。 二、操作 1、使用vscode打开下载路径 2、全局地址替换 关键字 huggingface.co 替换为 hf-mirror.com 注意&#xff1a;务…...

新站如何快速获得搜索引擎收录?

本文来自&#xff1a;百万收录网 原文链接&#xff1a;https://www.baiwanshoulu.com/8.html 新站想要快速获得搜索引擎收录&#xff0c;需要采取一系列有针对性的策略。以下是一些具体的建议&#xff1a; 一、网站内容优化 高质量原创内容&#xff1a; 确保网站内容原创、…...

如何使用tushare pro获取股票数据——附爬虫代码以及tushare积分获取方式

提示&#xff1a;文章写完后&#xff0c;目录可以自动生成&#xff0c;如何生成可参考右边的帮助文档 文章目录 前言一、pandas是什么&#xff1f;二、使用步骤 1.引入库2.读入数据 总结 一、Tushare 介绍 Tushare 是一个提供中国股市数据的API接口服务&#xff0c;它允许用户…...

解决vsocde ssh远程连接同一ip,不同端口情况下,无法区分的问题

一般服务器会通过镜像分身或者容器的方式&#xff0c;一个ip分出多个端口给多人使用&#xff0c;但如果碰到需要连接同一user&#xff0c;同一个ip,不同端口的情况&#xff0c;vscode就无法识别&#xff0c;如下图所示&#xff0c;vscode无法区分该ip下不同端口的连接&#xff…...

Elasticsearch 自定义分成器 拼音搜索 搜索自动补全 Java对接

介绍 通常用于将文档中的文本数据拆分成易于索引的词项&#xff08;tokens&#xff09;。有时&#xff0c;默认的分词器无法满足特定应用需求&#xff0c;这时就可以创建 自定义分词器 来实现定制化的文本分析。 自定义分词器组成 Char Filters&#xff08;字符过滤器&#x…...

网络编程(Modbus进阶)

思维导图 Modbus RTU&#xff08;先学一点理论&#xff09; 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议&#xff0c;由 Modicon 公司&#xff08;现施耐德电气&#xff09;于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

大数据零基础学习day1之环境准备和大数据初步理解

学习大数据会使用到多台Linux服务器。 一、环境准备 1、VMware 基于VMware构建Linux虚拟机 是大数据从业者或者IT从业者的必备技能之一也是成本低廉的方案 所以VMware虚拟机方案是必须要学习的。 &#xff08;1&#xff09;设置网关 打开VMware虚拟机&#xff0c;点击编辑…...

1688商品列表API与其他数据源的对接思路

将1688商品列表API与其他数据源对接时&#xff0c;需结合业务场景设计数据流转链路&#xff0c;重点关注数据格式兼容性、接口调用频率控制及数据一致性维护。以下是具体对接思路及关键技术点&#xff1a; 一、核心对接场景与目标 商品数据同步 场景&#xff1a;将1688商品信息…...

服务器硬防的应用场景都有哪些?

服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式&#xff0c;避免服务器受到各种恶意攻击和网络威胁&#xff0c;那么&#xff0c;服务器硬防通常都会应用在哪些场景当中呢&#xff1f; 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

使用 SymPy 进行向量和矩阵的高级操作

在科学计算和工程领域&#xff0c;向量和矩阵操作是解决问题的核心技能之一。Python 的 SymPy 库提供了强大的符号计算功能&#xff0c;能够高效地处理向量和矩阵的各种操作。本文将深入探讨如何使用 SymPy 进行向量和矩阵的创建、合并以及维度拓展等操作&#xff0c;并通过具体…...

Unsafe Fileupload篇补充-木马的详细教程与木马分享(中国蚁剑方式)

在之前的皮卡丘靶场第九期Unsafe Fileupload篇中我们学习了木马的原理并且学了一个简单的木马文件 本期内容是为了更好的为大家解释木马&#xff08;服务器方面的&#xff09;的原理&#xff0c;连接&#xff0c;以及各种木马及连接工具的分享 文件木马&#xff1a;https://w…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...