当前位置: 首页 > news >正文

编程题-最长的回文子串(中等)

题目:

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

解法一(三重for循环-时间复杂度超限):

利用滑动窗口思想,遍历字符串s中的所有子串,判断是否是回文子串,并保存最长的回文子串作为输出结果,由于采用三重for循环枚举所有情况,时间复杂度为O(N^3),时间超限,因此本方法不作为本题的正确解法,仅与下面的方法进行对比,如下为笔者代码:

class Solution {
public:string huiwen(string s, int left, int right){string result = "";int a = left;int b = right;while(left<right){if(s[left]==s[right]){left++;right--;}else{return result;}}for(int i=a; i<b+1; i++){result+=s[i];}return result;}string longestPalindrome(string s) {int length = s.size();int max = 0;string result = "";stack<char> Stack1;for(int i = 0; i<length; i++){int left = i;int right = i;while(right<length){if(s[left]!=s[right]){right++;}else{string a = huiwen(s,left,right);if(max<a.size()){result=a;max=a.size();}right++;}}}return result;}
};

解法二(动态规划思想):

对于一个子串而言,如果它是回文串,并且长度大于2,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 “ababa”,如果我们已经知道 “bab”是回文串,那么 "ababa"一定是回文串,这是因为它的首尾两个字母都是"a"。

根据这样的思路,我们就可以用动态规划的方法解决本题。我们用P(i,j)表示字符串s的第i到第j个字母组成的串是否为回文串:

我们就可以写出动态规划的状态转移方程:

上文的所有讨论是建立在子串长度大于 2 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件:

根据这个思路,我们就可以完成动态规划了,最终的答案即为所有 P(i,j)=true 中 j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序,如下为实现代码:

#include <iostream>
#include <string>
#include <vector>using namespace std;class Solution {
public:string longestPalindrome(string s) {int n = s.size();if (n < 2) {return s;}int maxLen = 1;int begin = 0;// dp[i][j] 表示 s[i..j] 是否是回文串vector<vector<int>> dp(n, vector<int>(n));// 初始化:所有长度为 1 的子串都是回文串for (int i = 0; i < n; i++) {dp[i][i] = true;}// 递推开始// 先枚举子串长度for (int L = 2; L <= n; L++) {// 枚举左边界,左边界的上限设置可以宽松一些for (int i = 0; i < n; i++) {// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得int j = L + i - 1;// 如果右边界越界,就可以退出当前循环if (j >= n) {break;}if (s[i] != s[j]) {dp[i][j] = false;} else {if (j - i < 3) {dp[i][j] = true;} else {dp[i][j] = dp[i + 1][j - 1];}}// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置if (dp[i][j] && j - i + 1 > maxLen) {maxLen = j - i + 1;begin = i;}}}return s.substr(begin, maxLen);}
};

时间复杂度:O(n2),其中 n 是字符串的长度。动态规划的状态总数为 O(n2),对于每个状态,我们需要转移的时间为 O(1)。空间复杂度:O(n2),即存储动态规划状态需要的空间。

解法三(中心扩展算法):

我们仔细观察一下方法一中的状态转移方程:

找出其中的状态转移链:

可以发现,所有的状态在转移的时候的可能性都是唯一的。也就是说,我们可以从每一种边界情况开始「扩展」,也可以得出所有的状态对应的答案。

边界情况即为子串长度为 1 或 2 的情况。我们枚举每一种边界情况,并从对应的子串开始不断地向两边扩展。如果两边的字母相同,我们就可以继续扩展,例如从 P(i+1,j−1) 扩展到 P(i,j);如果两边的字母不同,我们就可以停止扩展,因为在这之后的子串都不能是回文串了。

「边界情况」对应的子串实际上就是我们「扩展」出的回文串的「回文中心」。方法三的本质即为:我们枚举所有的「回文中心」并尝试「扩展」,直到无法扩展为止,此时的回文串长度即为此「回文中心」下的最长回文串长度。我们对所有的长度求出最大值,即可得到最终的答案。如下为实现代码:

class Solution {
public:pair<int, int> expandAroundCenter(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return {left + 1, right - 1};}string longestPalindrome(string s) {int start = 0, end = 0;for (int i = 0; i < s.size(); ++i) {auto [left1, right1] = expandAroundCenter(s, i, i);auto [left2, right2] = expandAroundCenter(s, i, i + 1);if (right1 - left1 > end - start) {start = left1;end = right1;}if (right2 - left2 > end - start) {start = left2;end = right2;}}return s.substr(start, end - start + 1);}
};

时间复杂度:O(n2),其中 n 是字符串的长度。长度为 1 和 2 的回文中心分别有 n 和 n−1 个,每个回文中心最多会向外扩展 O(n) 次。空间复杂度:O(1)。

解法四(Manacher 算法):

为了表述方便,我们定义一个新概念臂长,表示中心扩展算法向外扩展的长度。如果一个位置的最大回文字符串长度为 2 * length + 1 ,其臂长为 length。

下面的讨论只涉及长度为奇数的回文字符串。长度为偶数的回文字符串我们将会在最后与长度为奇数的情况统一起来。

思路与算法

在中心扩展算法的过程中,我们能够得出每个位置的臂长。那么当我们要得出以下一个位置 i 的臂长时,能不能利用之前得到的信息呢?

答案是肯定的。具体来说,如果位置 j 的臂长为 length,并且有 j + length > i,如下图所示:

当在位置 i 开始进行中心拓展时,我们可以先找到 i 关于 j 的对称点 2 * j - i。那么如果点 2 * j - i 的臂长等于 n,我们就可以知道,点 i 的臂长至少为 min(j + length - i, n)。那么我们就可以直接跳过 i 到 i + min(j + length - i, n) 这部分,从 i + min(j + length - i, n) + 1 开始拓展。

我们只需要在中心扩展法的过程中记录右臂在最右边的回文字符串,将其中心作为 j,在计算过程中就能最大限度地避免重复计算。

那么现在还有一个问题:如何处理长度为偶数的回文字符串呢?

我们可以通过一个特别的操作将奇偶数的情况统一起来:我们向字符串的头尾以及每两个字符中间添加一个特殊字符 #,比如字符串 aaba 处理后会变成 #a#a#b#a#。那么原先长度为偶数的回文字符串 aa 会变成长度为奇数的回文字符串 #a#a#,而长度为奇数的回文字符串 aba 会变成长度仍然为奇数的回文字符串 #a#b#a#,我们就不需要再考虑长度为偶数的回文字符串了。

注意这里的特殊字符不需要是没有出现过的字母,我们可以使用任何一个字符来作为这个特殊字符。这是因为,当我们只考虑长度为奇数的回文字符串时,每次我们比较的两个字符奇偶性一定是相同的,所以原来字符串中的字符不会与插入的特殊字符互相比较,不会因此产生问题。如下为实现代码:

class Solution {
public:int expand(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return (right - left - 2) / 2;}string longestPalindrome(string s) {int start = 0, end = -1;string t = "#";for (char c: s) {t += c;t += '#';}t += '#';s = t;vector<int> arm_len;int right = -1, j = -1;for (int i = 0; i < s.size(); ++i) {int cur_arm_len;if (right >= i) {int i_sym = j * 2 - i;int min_arm_len = min(arm_len[i_sym], right - i);cur_arm_len = expand(s, i - min_arm_len, i + min_arm_len);} else {cur_arm_len = expand(s, i, i);}arm_len.push_back(cur_arm_len);if (i + cur_arm_len > right) {j = i;right = i + cur_arm_len;}if (cur_arm_len * 2 + 1 > end - start) {start = i - cur_arm_len;end = i + cur_arm_len;}}string ans;for (int i = start; i <= end; ++i) {if (s[i] != '#') {ans += s[i];}}return ans;}
};

 时间复杂度:O(n),其中 n 是字符串的长度。由于对于每个位置,扩展要么从当前的最右侧臂长 right 开始,要么只会进行一步,而 right 最多向前走 O(n) 步,因此算法的复杂度为 O(n)。空间复杂度:O(n),我们需要 O(n) 的空间记录每个位置的臂长。

笔者小记:

1、vector<vector<int>> dp(n, vector<int>(n));含义,其中vector<vector<int>>定义了一个二维向量(矩阵),它的元素是int类型,外层的vector存储的是内层vector的集合。(n, vector<int>(n))是创建了一个n*n的矩阵,其中每个元素都是int类型的默认值(通常为0),n是矩阵的行数,vector<int>(n)创建了一个大小为n的vector<int>,这个向量会作为外层向量的每一个元素。

2、std::string substr()用于提取字符串的子串,允许指定起始位置和长度,例如

str.substr(7, 5);

表示提取str字符串索引位置从7开始的子串,长度为5。

3、C++中pair的用法:pair 是 一种模版类型。每个pair 可以存储两个值。这两种值无限制。也可以将自己写的struct的对象放进去。例如:pair<string,int> p; pair<int ,int > p; pair<double,int> p; 等都可以,若函数采用pair类型,则可以用return {int, int}进行返回。在函数外,可以采用auto [left1, right1] = expandAroundCenter(s, i, i)进行接受返回的{int, int}。例如:

pair<int, int> expandAroundCenter(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return {left + 1, right - 1};}

auto [left1,right1] 接收expandAroundCenter()函数返回的{left, right}值:

auto [left1, right1] = expandAroundCenter(s, i, i);

相关文章:

编程题-最长的回文子串(中等)

题目&#xff1a; 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 解释&#xff1a;"aba" 同样是符合题意的答案。示例 2&#xff1a; 输入&#xff1a;s &…...

Versal - 基础3(AXI NoC 专题+仿真+QoS)

目录 1. 简介 2. 示例 2.1 示例说明 2.2 创建项目 2.2.1 平台信息 2.2.2 AXI NoC Automation 2.2.3 创建时钟和复位 2.3 配置 NoC 2.4 配置 AXI Traffic 2.5 配置 Memory Size 2.6 Validate BD 2.7 添加观察信号 2.8 运行仿真 2.9 查看结果 2.9.1 整体波形 2.9…...

知识库建设对提升团队协作与创新能力的影响分析

内容概要 在当今快速变革的商业环境中&#xff0c;知识库建设的重要性愈发凸显。它不仅是信息存储的载体&#xff0c;更是推动组织内部沟通与协作的基石。通过系统整理与管理企业知识&#xff0c;团队成员能够便捷地访问相关信息&#xff0c;使得协作过程更为流畅&#xff0c;…...

Java 实现Excel转HTML、或HTML转Excel

Excel是一种电子表格格式&#xff0c;广泛用于数据处理和分析&#xff0c;而HTM则是一种用于创建网页的标记语言。虽然两者在用途上存在差异&#xff0c;但有时我们需要将数据从一种格式转换为另一种格式&#xff0c;以便更好地利用和展示数据。本文将介绍如何通过 Java 实现 E…...

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了&#xff0c;还不了解的uu&#xff0c; 可以移步去看这篇博客哟&#xff1a; 数据结构-栈数据结构-队列 简单回顾一下&#xff0c;重要的概念其实就是后进先出&#xff0c;栈在…...

云计算与虚拟化技术讲解视频分享

互联网各领域资料分享专区(不定期更新)&#xff1a; Sheet 前言 由于内容较多&#xff0c;且不便于排版&#xff0c;为避免资源失效&#xff0c;请用手机点击链接进行保存&#xff0c;若链接生效请及时反馈&#xff0c;谢谢~ 正文 链接如下&#xff08;为避免资源失效&#x…...

python flask 使用 redis写一个例子

下面是一个使用Flask和Redis的简单例子&#xff1a; from flask import Flask from redis import Redisapp Flask(__name__) redis Redis(hostlocalhost, port6379)app.route(/) def hello():# 写入到Redisredis.set(name, Flask Redis Example)# 从Redis中读取数据name re…...

深入解析 Linux 内核内存管理核心:mm/memory.c

在 Linux 内核的众多组件中,内存管理模块是系统性能和稳定性的关键。mm/memory.c 文件作为内存管理的核心实现,承载着页面故障处理、页面表管理、内存区域映射与取消映射等重要功能。本文将深入探讨 mm/memory.c 的设计思想、关键机制以及其在内核中的作用,帮助读者更好地理…...

跟我学C++中级篇——64位的处理

一、计算机的发展 计算机从二进制为基础开始描述整个世界&#xff0c;但正如现实世界一样&#xff0c;十进制为主的世界也会有万千百概念。所以在实际的应用中&#xff0c;会出现32位和64位的计算机系统。当然&#xff0c;前面还有过16位、8位和4位等&#xff0c;以后还可以会…...

指针的介绍2后

1.二级指针 1.1二级指针的介绍 二级指针是指向指针的指针 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>int main() {int a 100;int* pa &a;int** ppa &pa;printf("a %d\n", a);printf("&a(pa) %p\n", pa);prin…...

Linux 学习笔记__Day3

十八、设置虚拟机的静态IP 1、VMware的三种网络模式 安装VMware Workstation Pro之后&#xff0c;会在Windows系统中虚拟出两个虚拟网卡&#xff0c;如下&#xff1a; VMware提供了三种网络模式&#xff0c;分别是&#xff1a;桥接模式&#xff08;Bridged&#xff09;、NAT…...

Ubuntu x64下交叉编译ffmpeg、sdl2到目标架构为aarch64架构的系统(生成ffmpeg、ffprobe、ffplay)

一、编译SDL2-2.0.9 &#xff08;1&#xff09;&#xff0c; ./configure --prefix/home/z/Desktop/sdl2 --enable-sharedyes --enable-nasmno --enable-audiono --enable-ossno --enable-alsano --enable-alsa-sharedno --enable-pulseaudiono --enable-pulseaudio-sharedno …...

【时时三省】(C语言基础)文件的随机读写

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 fseek 根据文件指针的位置和偏移量来定位文件指针 示例&#xff1a; 这个输出的就是ade seek&#xff3f;cur的意思是从当前偏移量 2就是从a往后偏移两个就是d 偏移量 SEEK&#xff3f;CUR…...

HPO3:提升模型性能的高效超参数优化工具

引言 在当今快速发展的数据科学和机器学习领域中&#xff0c;超参数优化&#xff08;Hyperparameter Optimization, HPO&#xff09;是构建高性能模型不可或缺的一环。为了简化这一复杂过程&#xff0c;恒通网络科技团队推出了HPO3模块——一个专为Python开发者设计的强大库&a…...

【Docker】Docker入门了解

文章目录 Docker 的核心概念Docker 常用命令示例&#xff1a;构建一个简单的 C 应用容器1. 创建 C 应用2. 创建 Dockerfile3. 构建镜像4. 运行容器 Docker 优势学习 Docker 的下一步 **一、Docker 是什么&#xff1f;****为什么 C 开发者需要 Docker&#xff1f;** **二、核心概…...

AIGC(生成式AI)试用 19 -- AI Agent

AI Agent&#xff1a;自主完成特定目标任务。 AI Agent&#xff1a;以大语言模型为大脑驱动的系统&#xff0c;具备自主理解、感知、规划、记忆和使用工具的能力&#xff0c;能够自动化执行完成复杂任务的系统。AI Agent不同于传统的人工智能&#xff0c;它具备通过独立思考、调…...

LeetCode:70. 爬楼梯

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的…...

《Trustzone/TEE/安全从入门到精通-标准版》

CSDN学院课程连接:https://edu.csdn.net/course/detail/39573 讲师介绍 拥有 12 年手机安全、汽车安全、芯片安全开发经验,擅长 Trustzone/TEE/ 安全的设计与开发,对 ARM 架构的安全领域有着深入的研究和丰富的实践经验,能够将复杂的安全知识和处理器架构知识进行系统整…...

2025神奇的数字—新年快乐

2025年&#xff0c;一个神奇的数字&#xff0c;承载着数学的奥秘与无限可能。它是45的平方&#xff08;45&#xff09;&#xff0c;上一个这样的年份是1936年&#xff08;44&#xff09;&#xff0c;下一个则是2116年&#xff08;46&#xff09;&#xff0c;一生仅此一次。2025…...

第一个3D程序!

运行效果 CPP #include <iostream> #include <fstream> #include <string> #include <cmath>#include <GL/glew.h> #include <GLFW/glfw3.h> #include <glm/glm.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtc/…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

golang循环变量捕获问题​​

在 Go 语言中&#xff0c;当在循环中启动协程&#xff08;goroutine&#xff09;时&#xff0c;如果在协程闭包中直接引用循环变量&#xff0c;可能会遇到一个常见的陷阱 - ​​循环变量捕获问题​​。让我详细解释一下&#xff1a; 问题背景 看这个代码片段&#xff1a; fo…...

黑马Mybatis

Mybatis 表现层&#xff1a;页面展示 业务层&#xff1a;逻辑处理 持久层&#xff1a;持久数据化保存 在这里插入图片描述 Mybatis快速入门 ![在这里插入图片描述](https://i-blog.csdnimg.cn/direct/6501c2109c4442118ceb6014725e48e4.png //logback.xml <?xml ver…...

linux arm系统烧录

1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 &#xff08;忘了有没有这步了 估计有&#xff09; 刷机程序 和 镜像 就不提供了。要刷的时…...

微信小程序云开发平台MySQL的连接方式

注&#xff1a;微信小程序云开发平台指的是腾讯云开发 先给结论&#xff1a;微信小程序云开发平台的MySQL&#xff0c;无法通过获取数据库连接信息的方式进行连接&#xff0c;连接只能通过云开发的SDK连接&#xff0c;具体要参考官方文档&#xff1a; 为什么&#xff1f; 因为…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 在 GPU 上对图像执行 均值漂移滤波&#xff08;Mean Shift Filtering&#xff09;&#xff0c;用于图像分割或平滑处理。 该函数将输入图像中的…...

2025季度云服务器排行榜

在全球云服务器市场&#xff0c;各厂商的排名和地位并非一成不变&#xff0c;而是由其独特的优势、战略布局和市场适应性共同决定的。以下是根据2025年市场趋势&#xff0c;对主要云服务器厂商在排行榜中占据重要位置的原因和优势进行深度分析&#xff1a; 一、全球“三巨头”…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用

文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么&#xff1f;1.1.2 感知机的工作原理 1.2 感知机的简单应用&#xff1a;基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...

MySQL JOIN 表过多的优化思路

当 MySQL 查询涉及大量表 JOIN 时&#xff0c;性能会显著下降。以下是优化思路和简易实现方法&#xff1a; 一、核心优化思路 减少 JOIN 数量 数据冗余&#xff1a;添加必要的冗余字段&#xff08;如订单表直接存储用户名&#xff09;合并表&#xff1a;将频繁关联的小表合并成…...