当前位置: 首页 > news >正文

编程题-最长的回文子串(中等)

题目:

给你一个字符串 s,找到 s 中最长的回文子串。

示例 1:

输入:s = "babad"
输出:"bab"
解释:"aba" 同样是符合题意的答案。

示例 2:

输入:s = "cbbd"
输出:"bb"

解法一(三重for循环-时间复杂度超限):

利用滑动窗口思想,遍历字符串s中的所有子串,判断是否是回文子串,并保存最长的回文子串作为输出结果,由于采用三重for循环枚举所有情况,时间复杂度为O(N^3),时间超限,因此本方法不作为本题的正确解法,仅与下面的方法进行对比,如下为笔者代码:

class Solution {
public:string huiwen(string s, int left, int right){string result = "";int a = left;int b = right;while(left<right){if(s[left]==s[right]){left++;right--;}else{return result;}}for(int i=a; i<b+1; i++){result+=s[i];}return result;}string longestPalindrome(string s) {int length = s.size();int max = 0;string result = "";stack<char> Stack1;for(int i = 0; i<length; i++){int left = i;int right = i;while(right<length){if(s[left]!=s[right]){right++;}else{string a = huiwen(s,left,right);if(max<a.size()){result=a;max=a.size();}right++;}}}return result;}
};

解法二(动态规划思想):

对于一个子串而言,如果它是回文串,并且长度大于2,那么将它首尾的两个字母去除之后,它仍然是个回文串。例如对于字符串 “ababa”,如果我们已经知道 “bab”是回文串,那么 "ababa"一定是回文串,这是因为它的首尾两个字母都是"a"。

根据这样的思路,我们就可以用动态规划的方法解决本题。我们用P(i,j)表示字符串s的第i到第j个字母组成的串是否为回文串:

我们就可以写出动态规划的状态转移方程:

上文的所有讨论是建立在子串长度大于 2 的前提之上的,我们还需要考虑动态规划中的边界条件,即子串的长度为 1 或 2。对于长度为 1 的子串,它显然是个回文串;对于长度为 2 的子串,只要它的两个字母相同,它就是一个回文串。因此我们就可以写出动态规划的边界条件:

根据这个思路,我们就可以完成动态规划了,最终的答案即为所有 P(i,j)=true 中 j−i+1(即子串长度)的最大值。注意:在状态转移方程中,我们是从长度较短的字符串向长度较长的字符串进行转移的,因此一定要注意动态规划的循环顺序,如下为实现代码:

#include <iostream>
#include <string>
#include <vector>using namespace std;class Solution {
public:string longestPalindrome(string s) {int n = s.size();if (n < 2) {return s;}int maxLen = 1;int begin = 0;// dp[i][j] 表示 s[i..j] 是否是回文串vector<vector<int>> dp(n, vector<int>(n));// 初始化:所有长度为 1 的子串都是回文串for (int i = 0; i < n; i++) {dp[i][i] = true;}// 递推开始// 先枚举子串长度for (int L = 2; L <= n; L++) {// 枚举左边界,左边界的上限设置可以宽松一些for (int i = 0; i < n; i++) {// 由 L 和 i 可以确定右边界,即 j - i + 1 = L 得int j = L + i - 1;// 如果右边界越界,就可以退出当前循环if (j >= n) {break;}if (s[i] != s[j]) {dp[i][j] = false;} else {if (j - i < 3) {dp[i][j] = true;} else {dp[i][j] = dp[i + 1][j - 1];}}// 只要 dp[i][L] == true 成立,就表示子串 s[i..L] 是回文,此时记录回文长度和起始位置if (dp[i][j] && j - i + 1 > maxLen) {maxLen = j - i + 1;begin = i;}}}return s.substr(begin, maxLen);}
};

时间复杂度:O(n2),其中 n 是字符串的长度。动态规划的状态总数为 O(n2),对于每个状态,我们需要转移的时间为 O(1)。空间复杂度:O(n2),即存储动态规划状态需要的空间。

解法三(中心扩展算法):

我们仔细观察一下方法一中的状态转移方程:

找出其中的状态转移链:

可以发现,所有的状态在转移的时候的可能性都是唯一的。也就是说,我们可以从每一种边界情况开始「扩展」,也可以得出所有的状态对应的答案。

边界情况即为子串长度为 1 或 2 的情况。我们枚举每一种边界情况,并从对应的子串开始不断地向两边扩展。如果两边的字母相同,我们就可以继续扩展,例如从 P(i+1,j−1) 扩展到 P(i,j);如果两边的字母不同,我们就可以停止扩展,因为在这之后的子串都不能是回文串了。

「边界情况」对应的子串实际上就是我们「扩展」出的回文串的「回文中心」。方法三的本质即为:我们枚举所有的「回文中心」并尝试「扩展」,直到无法扩展为止,此时的回文串长度即为此「回文中心」下的最长回文串长度。我们对所有的长度求出最大值,即可得到最终的答案。如下为实现代码:

class Solution {
public:pair<int, int> expandAroundCenter(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return {left + 1, right - 1};}string longestPalindrome(string s) {int start = 0, end = 0;for (int i = 0; i < s.size(); ++i) {auto [left1, right1] = expandAroundCenter(s, i, i);auto [left2, right2] = expandAroundCenter(s, i, i + 1);if (right1 - left1 > end - start) {start = left1;end = right1;}if (right2 - left2 > end - start) {start = left2;end = right2;}}return s.substr(start, end - start + 1);}
};

时间复杂度:O(n2),其中 n 是字符串的长度。长度为 1 和 2 的回文中心分别有 n 和 n−1 个,每个回文中心最多会向外扩展 O(n) 次。空间复杂度:O(1)。

解法四(Manacher 算法):

为了表述方便,我们定义一个新概念臂长,表示中心扩展算法向外扩展的长度。如果一个位置的最大回文字符串长度为 2 * length + 1 ,其臂长为 length。

下面的讨论只涉及长度为奇数的回文字符串。长度为偶数的回文字符串我们将会在最后与长度为奇数的情况统一起来。

思路与算法

在中心扩展算法的过程中,我们能够得出每个位置的臂长。那么当我们要得出以下一个位置 i 的臂长时,能不能利用之前得到的信息呢?

答案是肯定的。具体来说,如果位置 j 的臂长为 length,并且有 j + length > i,如下图所示:

当在位置 i 开始进行中心拓展时,我们可以先找到 i 关于 j 的对称点 2 * j - i。那么如果点 2 * j - i 的臂长等于 n,我们就可以知道,点 i 的臂长至少为 min(j + length - i, n)。那么我们就可以直接跳过 i 到 i + min(j + length - i, n) 这部分,从 i + min(j + length - i, n) + 1 开始拓展。

我们只需要在中心扩展法的过程中记录右臂在最右边的回文字符串,将其中心作为 j,在计算过程中就能最大限度地避免重复计算。

那么现在还有一个问题:如何处理长度为偶数的回文字符串呢?

我们可以通过一个特别的操作将奇偶数的情况统一起来:我们向字符串的头尾以及每两个字符中间添加一个特殊字符 #,比如字符串 aaba 处理后会变成 #a#a#b#a#。那么原先长度为偶数的回文字符串 aa 会变成长度为奇数的回文字符串 #a#a#,而长度为奇数的回文字符串 aba 会变成长度仍然为奇数的回文字符串 #a#b#a#,我们就不需要再考虑长度为偶数的回文字符串了。

注意这里的特殊字符不需要是没有出现过的字母,我们可以使用任何一个字符来作为这个特殊字符。这是因为,当我们只考虑长度为奇数的回文字符串时,每次我们比较的两个字符奇偶性一定是相同的,所以原来字符串中的字符不会与插入的特殊字符互相比较,不会因此产生问题。如下为实现代码:

class Solution {
public:int expand(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return (right - left - 2) / 2;}string longestPalindrome(string s) {int start = 0, end = -1;string t = "#";for (char c: s) {t += c;t += '#';}t += '#';s = t;vector<int> arm_len;int right = -1, j = -1;for (int i = 0; i < s.size(); ++i) {int cur_arm_len;if (right >= i) {int i_sym = j * 2 - i;int min_arm_len = min(arm_len[i_sym], right - i);cur_arm_len = expand(s, i - min_arm_len, i + min_arm_len);} else {cur_arm_len = expand(s, i, i);}arm_len.push_back(cur_arm_len);if (i + cur_arm_len > right) {j = i;right = i + cur_arm_len;}if (cur_arm_len * 2 + 1 > end - start) {start = i - cur_arm_len;end = i + cur_arm_len;}}string ans;for (int i = start; i <= end; ++i) {if (s[i] != '#') {ans += s[i];}}return ans;}
};

 时间复杂度:O(n),其中 n 是字符串的长度。由于对于每个位置,扩展要么从当前的最右侧臂长 right 开始,要么只会进行一步,而 right 最多向前走 O(n) 步,因此算法的复杂度为 O(n)。空间复杂度:O(n),我们需要 O(n) 的空间记录每个位置的臂长。

笔者小记:

1、vector<vector<int>> dp(n, vector<int>(n));含义,其中vector<vector<int>>定义了一个二维向量(矩阵),它的元素是int类型,外层的vector存储的是内层vector的集合。(n, vector<int>(n))是创建了一个n*n的矩阵,其中每个元素都是int类型的默认值(通常为0),n是矩阵的行数,vector<int>(n)创建了一个大小为n的vector<int>,这个向量会作为外层向量的每一个元素。

2、std::string substr()用于提取字符串的子串,允许指定起始位置和长度,例如

str.substr(7, 5);

表示提取str字符串索引位置从7开始的子串,长度为5。

3、C++中pair的用法:pair 是 一种模版类型。每个pair 可以存储两个值。这两种值无限制。也可以将自己写的struct的对象放进去。例如:pair<string,int> p; pair<int ,int > p; pair<double,int> p; 等都可以,若函数采用pair类型,则可以用return {int, int}进行返回。在函数外,可以采用auto [left1, right1] = expandAroundCenter(s, i, i)进行接受返回的{int, int}。例如:

pair<int, int> expandAroundCenter(const string& s, int left, int right) {while (left >= 0 && right < s.size() && s[left] == s[right]) {--left;++right;}return {left + 1, right - 1};}

auto [left1,right1] 接收expandAroundCenter()函数返回的{left, right}值:

auto [left1, right1] = expandAroundCenter(s, i, i);

相关文章:

编程题-最长的回文子串(中等)

题目&#xff1a; 给你一个字符串 s&#xff0c;找到 s 中最长的回文子串。 示例 1&#xff1a; 输入&#xff1a;s "babad" 输出&#xff1a;"bab" 解释&#xff1a;"aba" 同样是符合题意的答案。示例 2&#xff1a; 输入&#xff1a;s &…...

Versal - 基础3(AXI NoC 专题+仿真+QoS)

目录 1. 简介 2. 示例 2.1 示例说明 2.2 创建项目 2.2.1 平台信息 2.2.2 AXI NoC Automation 2.2.3 创建时钟和复位 2.3 配置 NoC 2.4 配置 AXI Traffic 2.5 配置 Memory Size 2.6 Validate BD 2.7 添加观察信号 2.8 运行仿真 2.9 查看结果 2.9.1 整体波形 2.9…...

知识库建设对提升团队协作与创新能力的影响分析

内容概要 在当今快速变革的商业环境中&#xff0c;知识库建设的重要性愈发凸显。它不仅是信息存储的载体&#xff0c;更是推动组织内部沟通与协作的基石。通过系统整理与管理企业知识&#xff0c;团队成员能够便捷地访问相关信息&#xff0c;使得协作过程更为流畅&#xff0c;…...

Java 实现Excel转HTML、或HTML转Excel

Excel是一种电子表格格式&#xff0c;广泛用于数据处理和分析&#xff0c;而HTM则是一种用于创建网页的标记语言。虽然两者在用途上存在差异&#xff0c;但有时我们需要将数据从一种格式转换为另一种格式&#xff0c;以便更好地利用和展示数据。本文将介绍如何通过 Java 实现 E…...

stack 和 queue容器的介绍和使用

1.stack的介绍 1.1stack容器的介绍 stack容器的基本特征和功能我们在数据结构篇就已经详细介绍了&#xff0c;还不了解的uu&#xff0c; 可以移步去看这篇博客哟&#xff1a; 数据结构-栈数据结构-队列 简单回顾一下&#xff0c;重要的概念其实就是后进先出&#xff0c;栈在…...

云计算与虚拟化技术讲解视频分享

互联网各领域资料分享专区(不定期更新)&#xff1a; Sheet 前言 由于内容较多&#xff0c;且不便于排版&#xff0c;为避免资源失效&#xff0c;请用手机点击链接进行保存&#xff0c;若链接生效请及时反馈&#xff0c;谢谢~ 正文 链接如下&#xff08;为避免资源失效&#x…...

python flask 使用 redis写一个例子

下面是一个使用Flask和Redis的简单例子&#xff1a; from flask import Flask from redis import Redisapp Flask(__name__) redis Redis(hostlocalhost, port6379)app.route(/) def hello():# 写入到Redisredis.set(name, Flask Redis Example)# 从Redis中读取数据name re…...

深入解析 Linux 内核内存管理核心:mm/memory.c

在 Linux 内核的众多组件中,内存管理模块是系统性能和稳定性的关键。mm/memory.c 文件作为内存管理的核心实现,承载着页面故障处理、页面表管理、内存区域映射与取消映射等重要功能。本文将深入探讨 mm/memory.c 的设计思想、关键机制以及其在内核中的作用,帮助读者更好地理…...

跟我学C++中级篇——64位的处理

一、计算机的发展 计算机从二进制为基础开始描述整个世界&#xff0c;但正如现实世界一样&#xff0c;十进制为主的世界也会有万千百概念。所以在实际的应用中&#xff0c;会出现32位和64位的计算机系统。当然&#xff0c;前面还有过16位、8位和4位等&#xff0c;以后还可以会…...

指针的介绍2后

1.二级指针 1.1二级指针的介绍 二级指针是指向指针的指针 #define _CRT_SECURE_NO_WARNINGS 1 #include <stdio.h>int main() {int a 100;int* pa &a;int** ppa &pa;printf("a %d\n", a);printf("&a(pa) %p\n", pa);prin…...

Linux 学习笔记__Day3

十八、设置虚拟机的静态IP 1、VMware的三种网络模式 安装VMware Workstation Pro之后&#xff0c;会在Windows系统中虚拟出两个虚拟网卡&#xff0c;如下&#xff1a; VMware提供了三种网络模式&#xff0c;分别是&#xff1a;桥接模式&#xff08;Bridged&#xff09;、NAT…...

Ubuntu x64下交叉编译ffmpeg、sdl2到目标架构为aarch64架构的系统(生成ffmpeg、ffprobe、ffplay)

一、编译SDL2-2.0.9 &#xff08;1&#xff09;&#xff0c; ./configure --prefix/home/z/Desktop/sdl2 --enable-sharedyes --enable-nasmno --enable-audiono --enable-ossno --enable-alsano --enable-alsa-sharedno --enable-pulseaudiono --enable-pulseaudio-sharedno …...

【时时三省】(C语言基础)文件的随机读写

山不在高&#xff0c;有仙则名。水不在深&#xff0c;有龙则灵。 ----CSDN 时时三省 fseek 根据文件指针的位置和偏移量来定位文件指针 示例&#xff1a; 这个输出的就是ade seek&#xff3f;cur的意思是从当前偏移量 2就是从a往后偏移两个就是d 偏移量 SEEK&#xff3f;CUR…...

HPO3:提升模型性能的高效超参数优化工具

引言 在当今快速发展的数据科学和机器学习领域中&#xff0c;超参数优化&#xff08;Hyperparameter Optimization, HPO&#xff09;是构建高性能模型不可或缺的一环。为了简化这一复杂过程&#xff0c;恒通网络科技团队推出了HPO3模块——一个专为Python开发者设计的强大库&a…...

【Docker】Docker入门了解

文章目录 Docker 的核心概念Docker 常用命令示例&#xff1a;构建一个简单的 C 应用容器1. 创建 C 应用2. 创建 Dockerfile3. 构建镜像4. 运行容器 Docker 优势学习 Docker 的下一步 **一、Docker 是什么&#xff1f;****为什么 C 开发者需要 Docker&#xff1f;** **二、核心概…...

AIGC(生成式AI)试用 19 -- AI Agent

AI Agent&#xff1a;自主完成特定目标任务。 AI Agent&#xff1a;以大语言模型为大脑驱动的系统&#xff0c;具备自主理解、感知、规划、记忆和使用工具的能力&#xff0c;能够自动化执行完成复杂任务的系统。AI Agent不同于传统的人工智能&#xff0c;它具备通过独立思考、调…...

LeetCode:70. 爬楼梯

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;70. 爬楼梯 假设你正在爬楼梯。需要 n 阶你才能到达楼顶。 每次你可以爬 1 或 2 个台阶。你有多少种不同的…...

《Trustzone/TEE/安全从入门到精通-标准版》

CSDN学院课程连接:https://edu.csdn.net/course/detail/39573 讲师介绍 拥有 12 年手机安全、汽车安全、芯片安全开发经验,擅长 Trustzone/TEE/ 安全的设计与开发,对 ARM 架构的安全领域有着深入的研究和丰富的实践经验,能够将复杂的安全知识和处理器架构知识进行系统整…...

2025神奇的数字—新年快乐

2025年&#xff0c;一个神奇的数字&#xff0c;承载着数学的奥秘与无限可能。它是45的平方&#xff08;45&#xff09;&#xff0c;上一个这样的年份是1936年&#xff08;44&#xff09;&#xff0c;下一个则是2116年&#xff08;46&#xff09;&#xff0c;一生仅此一次。2025…...

第一个3D程序!

运行效果 CPP #include <iostream> #include <fstream> #include <string> #include <cmath>#include <GL/glew.h> #include <GLFW/glfw3.h> #include <glm/glm.hpp> #include <glm/gtc/type_ptr.hpp> #include <glm/gtc/…...

[特殊字符] 智能合约中的数据是如何在区块链中保持一致的?

&#x1f9e0; 智能合约中的数据是如何在区块链中保持一致的&#xff1f; 为什么所有区块链节点都能得出相同结果&#xff1f;合约调用这么复杂&#xff0c;状态真能保持一致吗&#xff1f;本篇带你从底层视角理解“状态一致性”的真相。 一、智能合约的数据存储在哪里&#xf…...

TDengine 快速体验(Docker 镜像方式)

简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能&#xff0c;本节首先介绍如何通过 Docker 快速体验 TDengine&#xff0c;然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker&#xff0c;请使用 安装包的方式快…...

React hook之useRef

React useRef 详解 useRef 是 React 提供的一个 Hook&#xff0c;用于在函数组件中创建可变的引用对象。它在 React 开发中有多种重要用途&#xff0c;下面我将全面详细地介绍它的特性和用法。 基本概念 1. 创建 ref const refContainer useRef(initialValue);initialValu…...

Rust 异步编程

Rust 异步编程 引言 Rust 是一种系统编程语言,以其高性能、安全性以及零成本抽象而著称。在多核处理器成为主流的今天,异步编程成为了一种提高应用性能、优化资源利用的有效手段。本文将深入探讨 Rust 异步编程的核心概念、常用库以及最佳实践。 异步编程基础 什么是异步…...

《基于Apache Flink的流处理》笔记

思维导图 1-3 章 4-7章 8-11 章 参考资料 源码&#xff1a; https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...

css3笔记 (1) 自用

outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size&#xff1a;0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格&#xff…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

QT3D学习笔记——圆台、圆锥

类名作用Qt3DWindow3D渲染窗口容器QEntity场景中的实体&#xff08;对象或容器&#xff09;QCamera控制观察视角QPointLight点光源QConeMesh圆锥几何网格QTransform控制实体的位置/旋转/缩放QPhongMaterialPhong光照材质&#xff08;定义颜色、反光等&#xff09;QFirstPersonC…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机&#xff0c;因为在使用过程中发现 Airsim 对外部监控相机的描述模糊&#xff0c;而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置&#xff0c;最后在源码示例中找到了&#xff0c;所以感…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...