Python 数据分析 - Matplotlib 绘图
Python 数据分析 - Matplotlib 绘图
- 简介
- 绘图
- 折线图
- 单线
- 多线
- 子图
- 散点图
- 直方图
- 条形图
- 纵置
- 横置
- 多条
- 饼图
简介
Matplotlib
是 Python
提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install matplotlib
命令即可,Matplotlib
经常会与 NumPy
一起使用。
在进行数据分析时,可视化工作是一个十分重要的环节,数据可视化可以让我们更加直观、清晰的了解数据,Matplotlib
就是一种可视化实现方式。
绘图
下面我们来学习一下如何使用 Matplotlib
绘制常用统计图。
折线图
折线图可以显示随某一指标变化的连续数据。
单线
首先,我们来看一下如何使用 Matplotlib
绘制一个简单的折线图,具体实现如下:
# import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 设置中文字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
x = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, marker='o', linestyle='-', color='b', label='数据系列')
plt.show()
我们在使用中文时可能会现乱码的问题,可以通过如下方式解决:
plt.rcParams['font.sans-serif'] = ['SimHei']
我们还可以改变折线的样式、颜色等,通过示例来看一下。
from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
'''
figsize:设置图片的宽、高,单位为英寸
dpi:设置分辨率
'''
plt.figure(figsize=(8, 5), dpi=80)
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
'''
color:颜色
linewidth:线的宽度
marker:折点样式
linestyle:线的样式,主要包括:'-'、'--'、'-.'、':'
'''
plt.plot(x, y, color='red', marker='o', linewidth='1', linestyle='--')
# 保存
# plt.savefig('test.png')
plt.show()
看一下效果:
多线
有时候我们可能存在多个指标对比的情况,也就是需要在一个图中绘制多条折线,比如:我们要了解张三、李四随着年龄增长体重的变化情况,示例如下所示:
from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']x = range(15, 25)
y1 = [50, 55, 58, 65, 70, 68, 70, 72, 75, 70]
y2 = [52, 53, 60, 63, 65, 68, 75, 80, 85, 72]
plt.figure(figsize=(10, 6), dpi=80)
plt.title('体重年龄折线图')
plt.xlabel('年龄(岁)')
plt.ylabel('体重(kg)')
plt.plot(x, y1, color='red', label='张三')
plt.plot(x, y2, color='blue', label='李四')
# 添加网格,alpha 为透明度
plt.grid(alpha=0.5)
# 添加图例
plt.legend(loc='upper right')
plt.show()
看一下效果:
子图
Matplotlib 可以实现在一张图中绘制多个子图,我们通过示例来看一下。
from matplotlib import pyplot as pltimport numpy as npa = np.arange(1, 30)
# 划分子图
fig, axs = plt.subplots(2, 2)
# 绘制子图
axs1 = axs[0, 0]
axs2 = axs[0, 1]
axs3 = axs[1, 0]
axs4 = axs[1, 1]
axs1.plot(a, a)
axs2.plot(a, np.sin(a))
axs3.plot(a, np.log(a))
axs4.plot(a, a ** 2)
plt.show()
看一下效果:
散点图
散点图表示因变量随自变量而变化的大致趋势,我们通过示例来具体看一下如何绘制散点图。
from matplotlib import pyplot as plt
import numpy as npx = np.arange(0, 20)
# 生成随机数
y = np.random.randint(0, 20, size=20)
plt.title('散点图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, 'ob')
plt.show()
看一下效果:
直方图
直方图也被称为质量分布图,主要用来表示数据的分布情况,我们通过示例来看一下如何绘制直方图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False# 生成随机数
d1 = np.random.randn(5000)
d2 = np.random.randn(4000)
'''
bins:直方图条目数
alpha:透明度
label:图例名
'''
plt.hist(d1, bins=50, label = 'label1', alpha=0.8)
plt.hist(d2, bins=50, label = 'label2', alpha=0.5)
plt.grid(alpha=0.3)
plt.title('直方图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
# 显示图例
plt.legend()
plt.show()
看一下效果:
条形图
条形图宽度相同,用高度或长短来表示数据多少,它可以横置或纵置。
纵置
首先,我们来看一下如何绘制纵向条形图,以学生成绩为例,看一下具体实现。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects = plt.bar(arr, y, width=0.3, label='语文')
'''
参数1:中点坐标
参数2:显示值
'''
plt.xticks([idx for idx in range(len(x))], x)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 在条形图上加标注
for rect in rects:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()
看一下效果:
横置
我们接着再通过示例来看一下如何绘制横向条形图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
y = ['张三', '李四', '王五', '赵六']
x = [88, 79, 70, 66]
plt.barh(range(4), x, 0.4, label='语文')
plt.yticks(range(4), y)
plt.xlabel('成绩')
plt.ylabel('姓名')
plt.title('学生成绩条形图')
plt.legend(loc='upper right')
for x, y in enumerate(x):plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()
看一下效果:
多条
最后,我们来看一下一个学生要同时显示语文和数学两门成绩时,如何通过 Matplotlib
来绘制条形图。
import matplotlib.pyplot as plt
import numpy as nparr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y1 = [88, 75, 77, 66]
y2 = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects1 = plt.bar(arr, y1, width=0.3, label='语文')
rects2 = plt.bar(arr + 0.3, y2, width=0.3, label='数学')
'''
参数1:中点坐标
参数2:显示值
参数3:间距
'''
plt.xticks([idx + 0.15 for idx in range(len(x))], x, rotation=10)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 编辑文本
for rect in rects1:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
for rect in rects2:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()
看一下效果:
饼图
饼图显示一个数据系列,我们通过示例来看一下如何绘制饼图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falselabel_list = ['第一部分', '第二部分', '第三部分']
size = [50, 30, 20]
# 各部分颜色
color = ['red', 'green', 'blue']
# 各部分突出值
explode = [0, 0.1, 0]
'''
explode:设置各部分突出
label:设置图例显示内容
labeldistance:设置图例内容距圆心位置
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从 0 开始逆时针转
pctdistance:设置圆内文本距圆心距离
l_text:圆内部文本
p_text:圆外部文本
'''
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
# 设置横轴和纵轴大小相等,这样饼才是圆的
plt.axis('equal')
plt.legend(loc='upper left')
plt.show()
看一下效果:
相关文章:

Python 数据分析 - Matplotlib 绘图
Python 数据分析 - Matplotlib 绘图 简介绘图折线图单线多线子图 散点图直方图条形图纵置横置多条 饼图 简介 Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install…...
uniapp版本升级
1.样式 登录进到首页,弹出更新提示框,且不可以关闭,侧边返回直接退出! 有关代码: <uv-popup ref"popupUpdate" round"8" :close-on-click-overlay"false"><view style"…...
Django ORM解决Oracle表多主键的问题
现状 以Django 3.2为例 Django ORM 设计为默认使用单一主键(通常是自增的 id 字段),这一选择主要基于以下核心原因: 简化ORM设计与操作 统一访问方式外键关联简化 避免歧义冲突 主键语义明确防止隐式依赖 性能与数据库兼容 索引…...

机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
朴素贝叶斯模型 贝叶斯定理: 常见类型 算法流程 优缺点 集成学习算法 基本原理 常见方法 KNN(聚类模型) 算法性质: 核心原理: 算法流程 优缺点 matlab中的运用 朴素贝叶斯模型 朴素贝叶斯模型是基于贝叶斯…...

ubuntu解决普通用户无法进入root
项目场景: 在RK3566上移植Ubuntu20.04之后普通用户无法进入管理员模式 问题描述 在普通用户使用sudo su试图进入管理员模式的时候报错 解决方案: 1.使用 cat /etc/passwd 查看所有用户.最后一行是 若无用户,则使用 sudo useradd -r -m -s /…...

Time Constant | RC、RL 和 RLC 电路中的时间常数
注:本文为 “Time Constant” 相关文章合辑。 机翻,未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 💡 Key learnings: 关键学习点: Time Constant Definition: The time constant (τ) is define…...

数据结构测试题2
一、单选题(每题 2 分,共20分) 1. 栈和队列的共同特点是( A )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2. 用链接方式存储的队列,在进行插入运算时( C ) A. 仅修改头指针 B. 头…...

在虚拟机里运行frida-server以实现对虚拟机目标软件的监测和修改参数(一)(android Google Api 35高版本版)
frida-server下载路径 我这里选择较高版本的frida-server-16.6.6-android-x86_64 以root身份启动adb 或 直接在android studio中打开 adb root 如果使用android studio打开的话,最好选择google api的虚拟机,默认以root模式开启 跳转到下载的frida-se…...
mysql_store_result的概念和使用案例
mysql_store_result() 是 MySQL C API 中的一个函数,用于检索一个完整的结果集到一个客户端。当执行一个查询(通常是 SELECT 查询)并希望处理所有返回的数据时,可以使用此函数。 概念 mysql_store_result() 函数的原型如下&…...

Linux进程调度与等待:背后的机制与实现
个人主页:chian-ocean 文章专栏-Linux 前言: 当一个进程发起某种操作(如I/O请求、信号、锁的获取等),但该操作需要的资源暂时不可用时,进程会被操作系统挂起,进入“等待队列”或“阻塞状态”。…...

网易云音乐歌名可视化:词云生成与GitHub-Pages部署实践
引言 本文将基于前一篇爬取的网易云音乐数据, 利用Python的wordcloud、matplotlib等库, 对歌名数据进行深入的词云可视化分析. 我们将探索不同random_state对词云布局的影响, 并详细介绍如何将生成的词云图部署到GitHub Pages, 实现数据可视化的在线展示. 介绍了如何从原始数据…...
单片机基础模块学习——DS18B20温度传感器芯片
不知道该往哪走的时候,就往前走。 一、DS18B20芯片原理图 该芯片共有三个引脚,分别为 GND——接地引脚DQ——数据通信引脚VDD——正电源 数据通信用到的是1-Wier协议 优点:占用端口少,电路设计方便 同时该协议要求通过上拉电阻…...

《网络数据安全管理条例》施行,企业如何推进未成年人个人信息保护(下)
文章目录 前言三、全流程推进未成年人个人信息保护1、处理前:未成年人个人信息处理的告知同意2、处理中:加强个人信息处理流程管理3、处理后:落实个人信息保护合规审计四、大型网络平台应每年发布社会责任报告前言 《网数条例》颁布前,我国已针对未成年人个人信息保护陆续…...

书生大模型实战营3
文章目录 L0——入门岛git基础Git 是什么?Git 中的一些基本概念工作区、暂存区和 Git 仓库区文件状态分支主要功能 Git 平台介绍GitHubGitLabGitee Git 下载配置验证下载 Git配置 Git验证 Git配置 Git常用操作Git简易入门四部曲Git其他指令 闯关任务任务1: 破冰活动…...
Spring Boot 集成 WebClient 实战教程 实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono
该项目介绍springboot集成WebClient 实现服务的请求操作 示例中演示了,如何配置WebClient的请求头,请求参数等相关参数,实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono。 为什么使用WebClient 不用RestTemplate 在 Spring Framework 5.0 及更高版本中,Res…...
C语言深入解析 printf的底层源码实现
深入解析 printf 的底层源码实现 printf 是 C 标准库中最常用的函数之一,用于格式化输出字符串。它的底层实现复杂且高效,包含多个模块化的函数和机制。本文结合 GNU C Library(glibc)的源码,详细分析 printf 的实现原…...
go 循环处理无限极数据
数据表结构: CREATE TABLE permission (id int(11) NOT NULL AUTO_INCREMENT COMMENT 权限ID,permission_name varchar(255) DEFAULT NULL COMMENT 权限名称,permission_url varchar(255) DEFAULT NULL COMMENT 权限路由,status tinyint(1) DEFAULT NULL COMMENT 权…...
C# Dynamic关键字
一、引言:开启动态编程之门 在 C# 的编程世界里,长久以来我们习惯了静态类型语言带来的严谨与稳定。在传统的 C# 编程中,变量的类型在编译时就已经确定,这就像是给每个变量贴上了一个固定的标签,在整个代码执行过程中…...

ReactNative react-devtools 夜神模拟器连调
目录 一、安装react-devtools 二、在package.json中配置启动项 三、联动 一、安装react-devtools yarn add react-devtools5.3.1 -D 这里选择5.3.1版本,因为高版本可能与夜神模拟器无法联动,导致部分功能无法正常使用。 二、在package.json中配置启…...

【教学类-89-02】20250128新年篇02——姓名藏头对联(星火讯飞+Python,五言对联,有横批)
背景需求: 过年了,我想用幼儿的名字写对联,但是我根本不会写,于是尝试让AI来写。 1.我班的孩子的名字都是2字和3字的 2.惊喜发现,AI它很快就能生成带名字的对联 但是观察发现,如果是二个名字的对联&#…...

XML Group端口详解
在XML数据映射过程中,经常需要对数据进行分组聚合操作。例如,当处理包含多个物料明细的XML文件时,可能需要将相同物料号的明细归为一组,或对相同物料号的数量进行求和计算。传统实现方式通常需要编写脚本代码,增加了开…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

黑马Mybatis
Mybatis 表现层:页面展示 业务层:逻辑处理 持久层:持久数据化保存 在这里插入图片描述 Mybatis快速入门 返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...

【入坑系列】TiDB 强制索引在不同库下不生效问题
文章目录 背景SQL 优化情况线上SQL运行情况分析怀疑1:执行计划绑定问题?尝试:SHOW WARNINGS 查看警告探索 TiDB 的 USE_INDEX 写法Hint 不生效问题排查解决参考背景 项目中使用 TiDB 数据库,并对 SQL 进行优化了,添加了强制索引。 UAT 环境已经生效,但 PROD 环境强制索…...
服务器硬防的应用场景都有哪些?
服务器硬防是指一种通过硬件设备层面的安全措施来防御服务器系统受到网络攻击的方式,避免服务器受到各种恶意攻击和网络威胁,那么,服务器硬防通常都会应用在哪些场景当中呢? 硬防服务器中一般会配备入侵检测系统和预防系统&#x…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...

给网站添加live2d看板娘
给网站添加live2d看板娘 参考文献: stevenjoezhang/live2d-widget: 把萌萌哒的看板娘抱回家 (ノ≧∇≦)ノ | Live2D widget for web platformEikanya/Live2d-model: Live2d model collectionzenghongtu/live2d-model-assets 前言 网站环境如下,文章也主…...
适应性Java用于现代 API:REST、GraphQL 和事件驱动
在快速发展的软件开发领域,REST、GraphQL 和事件驱动架构等新的 API 标准对于构建可扩展、高效的系统至关重要。Java 在现代 API 方面以其在企业应用中的稳定性而闻名,不断适应这些现代范式的需求。随着不断发展的生态系统,Java 在现代 API 方…...
vue3 daterange正则踩坑
<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...