当前位置: 首页 > news >正文

Python 数据分析 - Matplotlib 绘图

Python 数据分析 - Matplotlib 绘图

  • 简介
  • 绘图
    • 折线图
      • 单线
      • 多线
      • 子图
    • 散点图
    • 直方图
    • 条形图
      • 纵置
      • 横置
      • 多条
    • 饼图

简介

MatplotlibPython 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install matplotlib 命令即可,Matplotlib 经常会与 NumPy 一起使用。

在进行数据分析时,可视化工作是一个十分重要的环节,数据可视化可以让我们更加直观、清晰的了解数据,Matplotlib 就是一种可视化实现方式。

绘图

下面我们来学习一下如何使用 Matplotlib 绘制常用统计图。

折线图

折线图可以显示随某一指标变化的连续数据。

单线

首先,我们来看一下如何使用 Matplotlib 绘制一个简单的折线图,具体实现如下:

# import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 设置中文字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
x = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, marker='o', linestyle='-', color='b', label='数据系列')
plt.show()

在这里插入图片描述
我们在使用中文时可能会现乱码的问题,可以通过如下方式解决:

plt.rcParams['font.sans-serif'] = ['SimHei']

我们还可以改变折线的样式、颜色等,通过示例来看一下。

from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
'''
figsize:设置图片的宽、高,单位为英寸
dpi:设置分辨率
'''
plt.figure(figsize=(8, 5), dpi=80)
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
'''
color:颜色
linewidth:线的宽度
marker:折点样式
linestyle:线的样式,主要包括:'-'、'--'、'-.'、':'
'''
plt.plot(x, y, color='red', marker='o', linewidth='1', linestyle='--')
# 保存
# plt.savefig('test.png')
plt.show()

看一下效果:
在这里插入图片描述

多线

有时候我们可能存在多个指标对比的情况,也就是需要在一个图中绘制多条折线,比如:我们要了解张三、李四随着年龄增长体重的变化情况,示例如下所示:

from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']x = range(15, 25)
y1 = [50, 55, 58, 65, 70, 68, 70, 72, 75, 70]
y2 = [52, 53, 60, 63, 65, 68, 75, 80, 85, 72]
plt.figure(figsize=(10, 6), dpi=80)
plt.title('体重年龄折线图')
plt.xlabel('年龄(岁)')
plt.ylabel('体重(kg)')
plt.plot(x, y1, color='red', label='张三')
plt.plot(x, y2, color='blue', label='李四')
# 添加网格,alpha 为透明度
plt.grid(alpha=0.5)
# 添加图例
plt.legend(loc='upper right')
plt.show()

看一下效果:
在这里插入图片描述

子图

Matplotlib 可以实现在一张图中绘制多个子图,我们通过示例来看一下。

from matplotlib import pyplot as pltimport numpy as npa = np.arange(1, 30)
# 划分子图
fig, axs = plt.subplots(2, 2)
# 绘制子图
axs1 = axs[0, 0]
axs2 = axs[0, 1]
axs3 = axs[1, 0]
axs4 = axs[1, 1]
axs1.plot(a, a)
axs2.plot(a, np.sin(a))
axs3.plot(a, np.log(a))
axs4.plot(a, a ** 2)
plt.show()

看一下效果:
在这里插入图片描述

散点图

散点图表示因变量随自变量而变化的大致趋势,我们通过示例来具体看一下如何绘制散点图。

from matplotlib import pyplot as plt
import numpy as npx = np.arange(0, 20)
# 生成随机数
y = np.random.randint(0, 20, size=20)
plt.title('散点图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, 'ob')
plt.show()

看一下效果:

在这里插入图片描述

直方图

直方图也被称为质量分布图,主要用来表示数据的分布情况,我们通过示例来看一下如何绘制直方图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False# 生成随机数
d1 = np.random.randn(5000)
d2 = np.random.randn(4000)
'''
bins:直方图条目数
alpha:透明度
label:图例名
'''
plt.hist(d1, bins=50, label = 'label1', alpha=0.8)
plt.hist(d2, bins=50, label = 'label2', alpha=0.5)
plt.grid(alpha=0.3)
plt.title('直方图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
# 显示图例
plt.legend()
plt.show()

看一下效果:
在这里插入图片描述

条形图

条形图宽度相同,用高度或长短来表示数据多少,它可以横置或纵置。

纵置

首先,我们来看一下如何绘制纵向条形图,以学生成绩为例,看一下具体实现。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects = plt.bar(arr, y, width=0.3, label='语文')
'''
参数1:中点坐标
参数2:显示值
'''
plt.xticks([idx for idx in range(len(x))], x)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 在条形图上加标注
for rect in rects:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()

看一下效果:
在这里插入图片描述

横置

我们接着再通过示例来看一下如何绘制横向条形图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
y = ['张三', '李四', '王五', '赵六']
x = [88, 79, 70, 66]
plt.barh(range(4), x, 0.4, label='语文')
plt.yticks(range(4), y)
plt.xlabel('成绩')
plt.ylabel('姓名')
plt.title('学生成绩条形图')
plt.legend(loc='upper right')
for x, y in enumerate(x):plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()

看一下效果:

在这里插入图片描述

多条

最后,我们来看一下一个学生要同时显示语文和数学两门成绩时,如何通过 Matplotlib 来绘制条形图。

import matplotlib.pyplot as plt
import numpy as nparr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y1 = [88, 75, 77, 66]
y2 = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects1 = plt.bar(arr, y1, width=0.3, label='语文')
rects2 = plt.bar(arr + 0.3, y2, width=0.3, label='数学')
'''
参数1:中点坐标
参数2:显示值
参数3:间距
'''
plt.xticks([idx + 0.15 for idx in range(len(x))], x, rotation=10)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 编辑文本
for rect in rects1:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
for rect in rects2:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()

看一下效果:

在这里插入图片描述

饼图

饼图显示一个数据系列,我们通过示例来看一下如何绘制饼图。

from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falselabel_list = ['第一部分', '第二部分', '第三部分']
size = [50, 30, 20]
# 各部分颜色
color = ['red', 'green', 'blue']
# 各部分突出值
explode = [0, 0.1, 0]
'''
explode:设置各部分突出
label:设置图例显示内容
labeldistance:设置图例内容距圆心位置
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从 0 开始逆时针转
pctdistance:设置圆内文本距圆心距离
l_text:圆内部文本
p_text:圆外部文本
'''
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
# 设置横轴和纵轴大小相等,这样饼才是圆的
plt.axis('equal')
plt.legend(loc='upper left')
plt.show()

看一下效果:
在这里插入图片描述

相关文章:

Python 数据分析 - Matplotlib 绘图

Python 数据分析 - Matplotlib 绘图 简介绘图折线图单线多线子图 散点图直方图条形图纵置横置多条 饼图 简介 Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install…...

uniapp版本升级

1.样式 登录进到首页&#xff0c;弹出更新提示框&#xff0c;且不可以关闭&#xff0c;侧边返回直接退出&#xff01; 有关代码&#xff1a; <uv-popup ref"popupUpdate" round"8" :close-on-click-overlay"false"><view style"…...

Django ORM解决Oracle表多主键的问题

现状 以Django 3.2为例 Django ORM 设计为默认使用单一主键&#xff08;通常是自增的 id 字段&#xff09;&#xff0c;这一选择主要基于以下核心原因&#xff1a; 简化ORM设计与操作 统一访问方式外键关联简化 避免歧义冲突 主键语义明确防止隐式依赖 性能与数据库兼容 索引…...

机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)

朴素贝叶斯模型 贝叶斯定理&#xff1a; 常见类型 算法流程 优缺点 集成学习算法 基本原理 常见方法 KNN&#xff08;聚类模型&#xff09; 算法性质&#xff1a; 核心原理&#xff1a; 算法流程 优缺点 matlab中的运用 朴素贝叶斯模型 朴素贝叶斯模型是基于贝叶斯…...

ubuntu解决普通用户无法进入root

项目场景&#xff1a; 在RK3566上移植Ubuntu20.04之后普通用户无法进入管理员模式 问题描述 在普通用户使用sudo su试图进入管理员模式的时候报错 解决方案&#xff1a; 1.使用 cat /etc/passwd 查看所有用户.最后一行是 若无用户&#xff0c;则使用 sudo useradd -r -m -s /…...

Time Constant | RC、RL 和 RLC 电路中的时间常数

注&#xff1a;本文为 “Time Constant” 相关文章合辑。 机翻&#xff0c;未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 &#x1f4a1; Key learnings: 关键学习点&#xff1a; Time Constant Definition: The time constant (τ) is define…...

数据结构测试题2

一、单选题&#xff08;每题 2 分&#xff0c;共20分&#xff09; 1. 栈和队列的共同特点是( A )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2. 用链接方式存储的队列&#xff0c;在进行插入运算时( C ) A. 仅修改头指针 B. 头…...

在虚拟机里运行frida-server以实现对虚拟机目标软件的监测和修改参数(一)(android Google Api 35高版本版)

frida-server下载路径 我这里选择较高版本的frida-server-16.6.6-android-x86_64 以root身份启动adb 或 直接在android studio中打开 adb root 如果使用android studio打开的话&#xff0c;最好选择google api的虚拟机&#xff0c;默认以root模式开启 跳转到下载的frida-se…...

mysql_store_result的概念和使用案例

mysql_store_result() 是 MySQL C API 中的一个函数&#xff0c;用于检索一个完整的结果集到一个客户端。当执行一个查询&#xff08;通常是 SELECT 查询&#xff09;并希望处理所有返回的数据时&#xff0c;可以使用此函数。 概念 mysql_store_result() 函数的原型如下&…...

Linux进程调度与等待:背后的机制与实现

个人主页&#xff1a;chian-ocean 文章专栏-Linux 前言&#xff1a; 当一个进程发起某种操作&#xff08;如I/O请求、信号、锁的获取等&#xff09;&#xff0c;但该操作需要的资源暂时不可用时&#xff0c;进程会被操作系统挂起&#xff0c;进入“等待队列”或“阻塞状态”。…...

网易云音乐歌名可视化:词云生成与GitHub-Pages部署实践

引言 本文将基于前一篇爬取的网易云音乐数据, 利用Python的wordcloud、matplotlib等库, 对歌名数据进行深入的词云可视化分析. 我们将探索不同random_state对词云布局的影响, 并详细介绍如何将生成的词云图部署到GitHub Pages, 实现数据可视化的在线展示. 介绍了如何从原始数据…...

单片机基础模块学习——DS18B20温度传感器芯片

不知道该往哪走的时候&#xff0c;就往前走。 一、DS18B20芯片原理图 该芯片共有三个引脚&#xff0c;分别为 GND——接地引脚DQ——数据通信引脚VDD——正电源 数据通信用到的是1-Wier协议 优点&#xff1a;占用端口少&#xff0c;电路设计方便 同时该协议要求通过上拉电阻…...

《网络数据安全管理条例》施行,企业如何推进未成年人个人信息保护(下)

文章目录 前言三、全流程推进未成年人个人信息保护1、处理前:未成年人个人信息处理的告知同意2、处理中:加强个人信息处理流程管理3、处理后:落实个人信息保护合规审计四、大型网络平台应每年发布社会责任报告前言 《网数条例》颁布前,我国已针对未成年人个人信息保护陆续…...

书生大模型实战营3

文章目录 L0——入门岛git基础Git 是什么&#xff1f;Git 中的一些基本概念工作区、暂存区和 Git 仓库区文件状态分支主要功能 Git 平台介绍GitHubGitLabGitee Git 下载配置验证下载 Git配置 Git验证 Git配置 Git常用操作Git简易入门四部曲Git其他指令 闯关任务任务1: 破冰活动…...

Spring Boot 集成 WebClient 实战教程 实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono

该项目介绍springboot集成WebClient 实现服务的请求操作 示例中演示了,如何配置WebClient的请求头,请求参数等相关参数,实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono。 为什么使用WebClient 不用RestTemplate 在 Spring Framework 5.0 及更高版本中,Res…...

C语言深入解析 printf的底层源码实现

深入解析 printf 的底层源码实现 printf 是 C 标准库中最常用的函数之一&#xff0c;用于格式化输出字符串。它的底层实现复杂且高效&#xff0c;包含多个模块化的函数和机制。本文结合 GNU C Library&#xff08;glibc&#xff09;的源码&#xff0c;详细分析 printf 的实现原…...

go 循环处理无限极数据

数据表结构&#xff1a; CREATE TABLE permission (id int(11) NOT NULL AUTO_INCREMENT COMMENT 权限ID,permission_name varchar(255) DEFAULT NULL COMMENT 权限名称,permission_url varchar(255) DEFAULT NULL COMMENT 权限路由,status tinyint(1) DEFAULT NULL COMMENT 权…...

C# Dynamic关键字

一、引言&#xff1a;开启动态编程之门 在 C# 的编程世界里&#xff0c;长久以来我们习惯了静态类型语言带来的严谨与稳定。在传统的 C# 编程中&#xff0c;变量的类型在编译时就已经确定&#xff0c;这就像是给每个变量贴上了一个固定的标签&#xff0c;在整个代码执行过程中…...

ReactNative react-devtools 夜神模拟器连调

目录 一、安装react-devtools 二、在package.json中配置启动项 三、联动 一、安装react-devtools yarn add react-devtools5.3.1 -D 这里选择5.3.1版本&#xff0c;因为高版本可能与夜神模拟器无法联动&#xff0c;导致部分功能无法正常使用。 二、在package.json中配置启…...

【教学类-89-02】20250128新年篇02——姓名藏头对联(星火讯飞+Python,五言对联,有横批)

背景需求&#xff1a; 过年了&#xff0c;我想用幼儿的名字写对联&#xff0c;但是我根本不会写&#xff0c;于是尝试让AI来写。 1.我班的孩子的名字都是2字和3字的 2.惊喜发现&#xff0c;AI它很快就能生成带名字的对联 但是观察发现&#xff0c;如果是二个名字的对联&#…...

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明

LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造&#xff0c;完美适配AGV和无人叉车。同时&#xff0c;集成以太网与语音合成技术&#xff0c;为各类高级系统&#xff08;如MES、调度系统、库位管理、立库等&#xff09;提供高效便捷的语音交互体验。 L…...

conda相比python好处

Conda 作为 Python 的环境和包管理工具&#xff0c;相比原生 Python 生态&#xff08;如 pip 虚拟环境&#xff09;有许多独特优势&#xff0c;尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处&#xff1a; 一、一站式环境管理&#xff1a…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

pikachu靶场通关笔记22-1 SQL注入05-1-insert注入(报错法)

目录 一、SQL注入 二、insert注入 三、报错型注入 四、updatexml函数 五、源码审计 六、insert渗透实战 1、渗透准备 2、获取数据库名database 3、获取表名table 4、获取列名column 5、获取字段 本系列为通过《pikachu靶场通关笔记》的SQL注入关卡(共10关&#xff0…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...

在Ubuntu24上采用Wine打开SourceInsight

1. 安装wine sudo apt install wine 2. 安装32位库支持,SourceInsight是32位程序 sudo dpkg --add-architecture i386 sudo apt update sudo apt install wine32:i386 3. 验证安装 wine --version 4. 安装必要的字体和库(解决显示问题) sudo apt install fonts-wqy…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

C#中的CLR属性、依赖属性与附加属性

CLR属性的主要特征 封装性&#xff1a; 隐藏字段的实现细节 提供对字段的受控访问 访问控制&#xff1a; 可单独设置get/set访问器的可见性 可创建只读或只写属性 计算属性&#xff1a; 可以在getter中执行计算逻辑 不需要直接对应一个字段 验证逻辑&#xff1a; 可以…...

RabbitMQ入门4.1.0版本(基于java、SpringBoot操作)

RabbitMQ 一、RabbitMQ概述 RabbitMQ RabbitMQ最初由LShift和CohesiveFT于2007年开发&#xff0c;后来由Pivotal Software Inc.&#xff08;现为VMware子公司&#xff09;接管。RabbitMQ 是一个开源的消息代理和队列服务器&#xff0c;用 Erlang 语言编写。广泛应用于各种分布…...

【LeetCode】3309. 连接二进制表示可形成的最大数值(递归|回溯|位运算)

LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 题目描述解题思路Java代码 题目描述 题目链接&#xff1a;LeetCode 3309. 连接二进制表示可形成的最大数值&#xff08;中等&#xff09; 给你一个长度为 3 的整数数组 nums。 现以某种顺序 连接…...