Python 数据分析 - Matplotlib 绘图
Python 数据分析 - Matplotlib 绘图
- 简介
- 绘图
- 折线图
- 单线
- 多线
- 子图
- 散点图
- 直方图
- 条形图
- 纵置
- 横置
- 多条
- 饼图
简介
Matplotlib
是 Python
提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install matplotlib
命令即可,Matplotlib
经常会与 NumPy
一起使用。
在进行数据分析时,可视化工作是一个十分重要的环节,数据可视化可以让我们更加直观、清晰的了解数据,Matplotlib
就是一种可视化实现方式。
绘图
下面我们来学习一下如何使用 Matplotlib
绘制常用统计图。
折线图
折线图可以显示随某一指标变化的连续数据。
单线
首先,我们来看一下如何使用 Matplotlib
绘制一个简单的折线图,具体实现如下:
# import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 设置中文字体为黑体
plt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False
x = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, marker='o', linestyle='-', color='b', label='数据系列')
plt.show()
我们在使用中文时可能会现乱码的问题,可以通过如下方式解决:
plt.rcParams['font.sans-serif'] = ['SimHei']
我们还可以改变折线的样式、颜色等,通过示例来看一下。
from matplotlib import pyplot as pltx = range(1, 7)
y = [13, 15, 14, 16, 15, 17]
'''
figsize:设置图片的宽、高,单位为英寸
dpi:设置分辨率
'''
plt.figure(figsize=(8, 5), dpi=80)
plt.title('折线图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
'''
color:颜色
linewidth:线的宽度
marker:折点样式
linestyle:线的样式,主要包括:'-'、'--'、'-.'、':'
'''
plt.plot(x, y, color='red', marker='o', linewidth='1', linestyle='--')
# 保存
# plt.savefig('test.png')
plt.show()
看一下效果:
多线
有时候我们可能存在多个指标对比的情况,也就是需要在一个图中绘制多条折线,比如:我们要了解张三、李四随着年龄增长体重的变化情况,示例如下所示:
from matplotlib import pyplot as pltplt.rcParams['font.sans-serif'] = ['SimHei']x = range(15, 25)
y1 = [50, 55, 58, 65, 70, 68, 70, 72, 75, 70]
y2 = [52, 53, 60, 63, 65, 68, 75, 80, 85, 72]
plt.figure(figsize=(10, 6), dpi=80)
plt.title('体重年龄折线图')
plt.xlabel('年龄(岁)')
plt.ylabel('体重(kg)')
plt.plot(x, y1, color='red', label='张三')
plt.plot(x, y2, color='blue', label='李四')
# 添加网格,alpha 为透明度
plt.grid(alpha=0.5)
# 添加图例
plt.legend(loc='upper right')
plt.show()
看一下效果:
子图
Matplotlib 可以实现在一张图中绘制多个子图,我们通过示例来看一下。
from matplotlib import pyplot as pltimport numpy as npa = np.arange(1, 30)
# 划分子图
fig, axs = plt.subplots(2, 2)
# 绘制子图
axs1 = axs[0, 0]
axs2 = axs[0, 1]
axs3 = axs[1, 0]
axs4 = axs[1, 1]
axs1.plot(a, a)
axs2.plot(a, np.sin(a))
axs3.plot(a, np.log(a))
axs4.plot(a, a ** 2)
plt.show()
看一下效果:
散点图
散点图表示因变量随自变量而变化的大致趋势,我们通过示例来具体看一下如何绘制散点图。
from matplotlib import pyplot as plt
import numpy as npx = np.arange(0, 20)
# 生成随机数
y = np.random.randint(0, 20, size=20)
plt.title('散点图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
plt.plot(x, y, 'ob')
plt.show()
看一下效果:
直方图
直方图也被称为质量分布图,主要用来表示数据的分布情况,我们通过示例来看一下如何绘制直方图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = False# 生成随机数
d1 = np.random.randn(5000)
d2 = np.random.randn(4000)
'''
bins:直方图条目数
alpha:透明度
label:图例名
'''
plt.hist(d1, bins=50, label = 'label1', alpha=0.8)
plt.hist(d2, bins=50, label = 'label2', alpha=0.5)
plt.grid(alpha=0.3)
plt.title('直方图')
plt.xlabel('x 轴')
plt.ylabel('y 轴')
# 显示图例
plt.legend()
plt.show()
看一下效果:
条形图
条形图宽度相同,用高度或长短来表示数据多少,它可以横置或纵置。
纵置
首先,我们来看一下如何绘制纵向条形图,以学生成绩为例,看一下具体实现。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects = plt.bar(arr, y, width=0.3, label='语文')
'''
参数1:中点坐标
参数2:显示值
'''
plt.xticks([idx for idx in range(len(x))], x)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 在条形图上加标注
for rect in rects:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()
看一下效果:
横置
我们接着再通过示例来看一下如何绘制横向条形图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falsearr = np.arange(4)
y = ['张三', '李四', '王五', '赵六']
x = [88, 79, 70, 66]
plt.barh(range(4), x, 0.4, label='语文')
plt.yticks(range(4), y)
plt.xlabel('成绩')
plt.ylabel('姓名')
plt.title('学生成绩条形图')
plt.legend(loc='upper right')
for x, y in enumerate(x):plt.text(y + 0.2, x - 0.1, '%s' % y)
plt.show()
看一下效果:
多条
最后,我们来看一下一个学生要同时显示语文和数学两门成绩时,如何通过 Matplotlib
来绘制条形图。
import matplotlib.pyplot as plt
import numpy as nparr = np.arange(4)
x = ['张三', '李四', '王五', '赵六']
y1 = [88, 75, 77, 66]
y2 = [77, 79, 70, 70]
'''
width:长条形宽度
label:图例名
'''
rects1 = plt.bar(arr, y1, width=0.3, label='语文')
rects2 = plt.bar(arr + 0.3, y2, width=0.3, label='数学')
'''
参数1:中点坐标
参数2:显示值
参数3:间距
'''
plt.xticks([idx + 0.15 for idx in range(len(x))], x, rotation=10)
plt.title('学生成绩条形图')
plt.xlabel('姓名')
plt.ylabel('成绩')
plt.legend()
# 编辑文本
for rect in rects1:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
for rect in rects2:height = rect.get_height()plt.text(rect.get_x() + rect.get_width() / 2, height, str(height), ha='center', va='bottom')
plt.show()
看一下效果:
饼图
饼图显示一个数据系列,我们通过示例来看一下如何绘制饼图。
from matplotlib import pyplot as plt
import numpy as npplt.rcParams['font.sans-serif'] = ['SimHei']
# 解决负号显示问题
plt.rcParams['axes.unicode_minus'] = Falselabel_list = ['第一部分', '第二部分', '第三部分']
size = [50, 30, 20]
# 各部分颜色
color = ['red', 'green', 'blue']
# 各部分突出值
explode = [0, 0.1, 0]
'''
explode:设置各部分突出
label:设置图例显示内容
labeldistance:设置图例内容距圆心位置
autopct:设置圆里面文本
shadow:设置是否有阴影
startangle:起始角度,默认从 0 开始逆时针转
pctdistance:设置圆内文本距圆心距离
l_text:圆内部文本
p_text:圆外部文本
'''
patches, l_text, p_text = plt.pie(size, explode=explode, colors=color, labels=label_list, labeldistance=1.1, autopct="%1.1f%%", shadow=False, startangle=90, pctdistance=0.6)
# 设置横轴和纵轴大小相等,这样饼才是圆的
plt.axis('equal')
plt.legend(loc='upper left')
plt.show()
看一下效果:
相关文章:

Python 数据分析 - Matplotlib 绘图
Python 数据分析 - Matplotlib 绘图 简介绘图折线图单线多线子图 散点图直方图条形图纵置横置多条 饼图 简介 Matplotlib 是 Python 提供的一个绘图库,通过该库我们可以很容易的绘制出折线图、直方图、散点图、饼图等丰富的统计图,安装使用 pip install…...
uniapp版本升级
1.样式 登录进到首页,弹出更新提示框,且不可以关闭,侧边返回直接退出! 有关代码: <uv-popup ref"popupUpdate" round"8" :close-on-click-overlay"false"><view style"…...
Django ORM解决Oracle表多主键的问题
现状 以Django 3.2为例 Django ORM 设计为默认使用单一主键(通常是自增的 id 字段),这一选择主要基于以下核心原因: 简化ORM设计与操作 统一访问方式外键关联简化 避免歧义冲突 主键语义明确防止隐式依赖 性能与数据库兼容 索引…...

机器学习2 (笔记)(朴素贝叶斯,集成学习,KNN和matlab运用)
朴素贝叶斯模型 贝叶斯定理: 常见类型 算法流程 优缺点 集成学习算法 基本原理 常见方法 KNN(聚类模型) 算法性质: 核心原理: 算法流程 优缺点 matlab中的运用 朴素贝叶斯模型 朴素贝叶斯模型是基于贝叶斯…...

ubuntu解决普通用户无法进入root
项目场景: 在RK3566上移植Ubuntu20.04之后普通用户无法进入管理员模式 问题描述 在普通用户使用sudo su试图进入管理员模式的时候报错 解决方案: 1.使用 cat /etc/passwd 查看所有用户.最后一行是 若无用户,则使用 sudo useradd -r -m -s /…...

Time Constant | RC、RL 和 RLC 电路中的时间常数
注:本文为 “Time Constant” 相关文章合辑。 机翻,未校。 How To Find The Time Constant in RC and RL Circuits June 8, 2024 💡 Key learnings: 关键学习点: Time Constant Definition: The time constant (τ) is define…...

数据结构测试题2
一、单选题(每题 2 分,共20分) 1. 栈和队列的共同特点是( A )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2. 用链接方式存储的队列,在进行插入运算时( C ) A. 仅修改头指针 B. 头…...

在虚拟机里运行frida-server以实现对虚拟机目标软件的监测和修改参数(一)(android Google Api 35高版本版)
frida-server下载路径 我这里选择较高版本的frida-server-16.6.6-android-x86_64 以root身份启动adb 或 直接在android studio中打开 adb root 如果使用android studio打开的话,最好选择google api的虚拟机,默认以root模式开启 跳转到下载的frida-se…...
mysql_store_result的概念和使用案例
mysql_store_result() 是 MySQL C API 中的一个函数,用于检索一个完整的结果集到一个客户端。当执行一个查询(通常是 SELECT 查询)并希望处理所有返回的数据时,可以使用此函数。 概念 mysql_store_result() 函数的原型如下&…...

Linux进程调度与等待:背后的机制与实现
个人主页:chian-ocean 文章专栏-Linux 前言: 当一个进程发起某种操作(如I/O请求、信号、锁的获取等),但该操作需要的资源暂时不可用时,进程会被操作系统挂起,进入“等待队列”或“阻塞状态”。…...

网易云音乐歌名可视化:词云生成与GitHub-Pages部署实践
引言 本文将基于前一篇爬取的网易云音乐数据, 利用Python的wordcloud、matplotlib等库, 对歌名数据进行深入的词云可视化分析. 我们将探索不同random_state对词云布局的影响, 并详细介绍如何将生成的词云图部署到GitHub Pages, 实现数据可视化的在线展示. 介绍了如何从原始数据…...
单片机基础模块学习——DS18B20温度传感器芯片
不知道该往哪走的时候,就往前走。 一、DS18B20芯片原理图 该芯片共有三个引脚,分别为 GND——接地引脚DQ——数据通信引脚VDD——正电源 数据通信用到的是1-Wier协议 优点:占用端口少,电路设计方便 同时该协议要求通过上拉电阻…...

《网络数据安全管理条例》施行,企业如何推进未成年人个人信息保护(下)
文章目录 前言三、全流程推进未成年人个人信息保护1、处理前:未成年人个人信息处理的告知同意2、处理中:加强个人信息处理流程管理3、处理后:落实个人信息保护合规审计四、大型网络平台应每年发布社会责任报告前言 《网数条例》颁布前,我国已针对未成年人个人信息保护陆续…...

书生大模型实战营3
文章目录 L0——入门岛git基础Git 是什么?Git 中的一些基本概念工作区、暂存区和 Git 仓库区文件状态分支主要功能 Git 平台介绍GitHubGitLabGitee Git 下载配置验证下载 Git配置 Git验证 Git配置 Git常用操作Git简易入门四部曲Git其他指令 闯关任务任务1: 破冰活动…...
Spring Boot 集成 WebClient 实战教程 实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono
该项目介绍springboot集成WebClient 实现服务的请求操作 示例中演示了,如何配置WebClient的请求头,请求参数等相关参数,实现同步、异步请求处理以及响应式编程、响应式流、响应式Mono。 为什么使用WebClient 不用RestTemplate 在 Spring Framework 5.0 及更高版本中,Res…...
C语言深入解析 printf的底层源码实现
深入解析 printf 的底层源码实现 printf 是 C 标准库中最常用的函数之一,用于格式化输出字符串。它的底层实现复杂且高效,包含多个模块化的函数和机制。本文结合 GNU C Library(glibc)的源码,详细分析 printf 的实现原…...
go 循环处理无限极数据
数据表结构: CREATE TABLE permission (id int(11) NOT NULL AUTO_INCREMENT COMMENT 权限ID,permission_name varchar(255) DEFAULT NULL COMMENT 权限名称,permission_url varchar(255) DEFAULT NULL COMMENT 权限路由,status tinyint(1) DEFAULT NULL COMMENT 权…...
C# Dynamic关键字
一、引言:开启动态编程之门 在 C# 的编程世界里,长久以来我们习惯了静态类型语言带来的严谨与稳定。在传统的 C# 编程中,变量的类型在编译时就已经确定,这就像是给每个变量贴上了一个固定的标签,在整个代码执行过程中…...

ReactNative react-devtools 夜神模拟器连调
目录 一、安装react-devtools 二、在package.json中配置启动项 三、联动 一、安装react-devtools yarn add react-devtools5.3.1 -D 这里选择5.3.1版本,因为高版本可能与夜神模拟器无法联动,导致部分功能无法正常使用。 二、在package.json中配置启…...

【教学类-89-02】20250128新年篇02——姓名藏头对联(星火讯飞+Python,五言对联,有横批)
背景需求: 过年了,我想用幼儿的名字写对联,但是我根本不会写,于是尝试让AI来写。 1.我班的孩子的名字都是2字和3字的 2.惊喜发现,AI它很快就能生成带名字的对联 但是观察发现,如果是二个名字的对联&#…...
设计模式和设计原则回顾
设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Nuxt.js 中的路由配置详解
Nuxt.js 通过其内置的路由系统简化了应用的路由配置,使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

NLP学习路线图(二十三):长短期记忆网络(LSTM)
在自然语言处理(NLP)领域,我们时刻面临着处理序列数据的核心挑战。无论是理解句子的结构、分析文本的情感,还是实现语言的翻译,都需要模型能够捕捉词语之间依时序产生的复杂依赖关系。传统的神经网络结构在处理这种序列依赖时显得力不从心,而循环神经网络(RNN) 曾被视为…...
高防服务器能够抵御哪些网络攻击呢?
高防服务器作为一种有着高度防御能力的服务器,可以帮助网站应对分布式拒绝服务攻击,有效识别和清理一些恶意的网络流量,为用户提供安全且稳定的网络环境,那么,高防服务器一般都可以抵御哪些网络攻击呢?下面…...

Java面试专项一-准备篇
一、企业简历筛选规则 一般企业的简历筛选流程:首先由HR先筛选一部分简历后,在将简历给到对应的项目负责人后再进行下一步的操作。 HR如何筛选简历 例如:Boss直聘(招聘方平台) 直接按照条件进行筛选 例如:…...

全志A40i android7.1 调试信息打印串口由uart0改为uart3
一,概述 1. 目的 将调试信息打印串口由uart0改为uart3。 2. 版本信息 Uboot版本:2014.07; Kernel版本:Linux-3.10; 二,Uboot 1. sys_config.fex改动 使能uart3(TX:PH00 RX:PH01),并让boo…...

如何在最短时间内提升打ctf(web)的水平?
刚刚刷完2遍 bugku 的 web 题,前来答题。 每个人对刷题理解是不同,有的人是看了writeup就等于刷了,有的人是收藏了writeup就等于刷了,有的人是跟着writeup做了一遍就等于刷了,还有的人是独立思考做了一遍就等于刷了。…...

算法岗面试经验分享-大模型篇
文章目录 A 基础语言模型A.1 TransformerA.2 Bert B 大语言模型结构B.1 GPTB.2 LLamaB.3 ChatGLMB.4 Qwen C 大语言模型微调C.1 Fine-tuningC.2 Adapter-tuningC.3 Prefix-tuningC.4 P-tuningC.5 LoRA A 基础语言模型 A.1 Transformer (1)资源 论文&a…...

回溯算法学习
一、电话号码的字母组合 import java.util.ArrayList; import java.util.List;import javax.management.loading.PrivateClassLoader;public class letterCombinations {private static final String[] KEYPAD {"", //0"", //1"abc", //2"…...
C++.OpenGL (14/64)多光源(Multiple Lights)
多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...