每日一题-判断是否是平衡二叉树
判断是否是平衡二叉树
- 题目描述
- 数据范围
- 题解
- 解题思路
- 递归算法
- 代码实现
- 代码解析
- 时间和空间复杂度分析
- 示例
- 示例 1
- 示例 2
- 总结
)
题目描述
输入一棵节点数为 n 的二叉树,判断该二叉树是否是平衡二叉树。平衡二叉树定义为:
- 它是一棵空树。
- 或者它的左右子树的高度差的绝对值不超过1,并且左右子树本身也是平衡二叉树。
平衡二叉树的性质:
- 空树被认为是平衡二叉树。
- 每个节点的左右子树高度差不超过1。

数据范围
n ≤ 100- 每个节点的值
val满足0 ≤ val ≤ 1000
题解
解题思路
我们可以通过深度优先搜索(DFS)来判断一棵二叉树是否是平衡二叉树。具体步骤如下:
- 定义树的高度: 计算任意一个节点的左子树和右子树的高度。
- 平衡性判断: 如果某个节点的左右子树的高度差超过1,树就不平衡;否则继续判断该节点的左右子树。
- 递归遍历: 对树的每个节点递归地进行平衡性判断。
递归算法
我们可以通过递归来判断二叉树的平衡性,同时在递归过程中计算树的高度。递归的核心思想是:
- 如果左右子树的高度差超过1,返回
false。 - 否则继续判断左右子树的平衡性。
为了避免重复计算,我们可以在递归时直接返回每个子树的高度。
代码实现
#include <stdbool.h>// 定义二叉树节点结构体
struct TreeNode {int val;struct TreeNode *left;struct TreeNode *right;
};// 计算树的高度
int height(struct TreeNode* pRoot) {if (pRoot == NULL)return 0; // 空树高度为0int left = height(pRoot->left); // 左子树的高度int right = height(pRoot->right); // 右子树的高度if (left == -1 || right == -1 || abs(left - right) > 1) {return -1; // 如果左右子树高度差超过1,返回-1,表示不平衡}return 1 + (left > right ? left : right); // 返回树的高度
}// 判断是否为平衡二叉树
bool IsBalanced_Solution(struct TreeNode* pRoot) {return height(pRoot) != -1; // 如果高度返回-1,表示不平衡
}
代码解析
-
height函数: 计算二叉树的高度,同时判断树是否平衡。- 如果当前节点为空,返回高度
0。 - 递归计算左子树和右子树的高度。
- 如果某个子树的高度差超过1,或者某个子树本身不平衡(返回
-1),就返回-1表示树不平衡。 - 否则,返回当前树的高度。
- 如果当前节点为空,返回高度
-
IsBalanced_Solution函数: 通过调用height函数来判断整棵树是否平衡。如果height返回-1,则说明树不平衡,返回false;否则返回true。
时间和空间复杂度分析
- 时间复杂度:
O(n)。每个节点只会被访问一次,时间复杂度为O(n),其中n是树的节点数。 - 空间复杂度:
O(h)。递归调用栈的深度是树的高度h,最坏情况下(例如完全不平衡的树),空间复杂度为O(n)。
示例
示例 1
输入:
{1,2,3,4,5,6,7}
输出:
true
示例 2
输入:
{}
输出:
true
总结
本题通过递归遍历二叉树,计算每个节点的左右子树高度,同时判断左右子树的高度差是否超过1来判断树是否平衡。时间复杂度为 O(n),空间复杂度为 O(h),其中 n 是节点数,h 是树的高度。非常难得是居然一次编译直接成功了,太开心了。题刷百编,其意自现。
相关文章:
每日一题-判断是否是平衡二叉树
判断是否是平衡二叉树 题目描述数据范围题解解题思路递归算法代码实现代码解析时间和空间复杂度分析示例示例 1示例 2 总结 ) 题目描述 输入一棵节点数为 n 的二叉树,判断该二叉树是否是平衡二叉树。平衡二叉树定义为: 它是一棵空树。或者它的左右子树…...
FLTK - FLTK1.4.1 - 搭建模板,将FLTK自带的实现搬过来做实验
文章目录 FLTK - FLTK1.4.1 - 搭建模板,将FLTK自带的实现搬过来做实验概述笔记my_fltk_test.cppfltk_test.hfltk_test.cxx用adjuster工程试了一下,好使。END FLTK - FLTK1.4.1 - 搭建模板,将FLTK自带的实现搬过来做实验 概述 用fluid搭建UI…...
《多阶段渐进式图像修复》学习笔记
paper:2102.02808 GitHub:swz30/MPRNet: [CVPR 2021] Multi-Stage Progressive Image Restoration. SOTA results for Image deblurring, deraining, and denoising. 目录 摘要 1、介绍 2、相关工作 2.1 单阶段方法 2.2 多阶段方法 2.3 注意力机…...
AWScurl笔记
摘要 AWScurl是一款专为与AWS服务交互设计的命令行工具,它模拟了curl的功能并添加了AWS签名版本4的支持。这一特性使得用户能够安全有效地执行带有AWS签名的请求,极大地提升了与AWS服务交互时的安全性和有效性。 GitHub - okigan/awscurl: curl-like acc…...
QT使用eigen
QT使用eigen 1. 下载eigen https://eigen.tuxfamily.org/index.php?titleMain_Page#Download 下载后解压 2. QT引入eigen eigen源码好像只有头文件,因此只需要引入头文件就好了 qt新建项目后。修改pro文件. INCLUDEPATH E:\222078\qt\eigen-3.4.0\eigen-3.…...
揭示Baklib企业内容管理系统CMS的核心功能与应用价值
内容概要 企业内容管理系统(CMS)是指通过一系列工具和技术,帮助企业高效地创建、存储、管理和分发数字内容的系统。这些系统在现代企业运作中发挥着至关重要的作用,尤其是在信息量大、业务流程复杂的环境中。Baklib作为一个突出的…...
如何跨互联网adb连接到远程手机-蓝牙电话集中维护
如何跨互联网adb连接到远程手机-蓝牙电话集中维护 --ADB连接专题 一、前言 随便找一个手机,安装一个App并简单设置一下,就可以跨互联网的ADB连接到这个手机,从而远程操控这个手机做各种操作。你敢相信吗?而这正是本篇想要描述的…...
flume和kafka整合 flume和kafka为什么一起用?
Flume和Kafka一起使用的主要原因是为了实现高效、可靠的数据采集和实时处理。12 实时流式日志处理的需求 Flume和Kafka结合使用的主要目的是为了完成实时流式的日志处理。Flume负责数据的采集和传输,而Kafka则作为消息缓存队列,能够有效地缓冲数据,防止数据堆积或丢…...
java.util.Random类(详细案例拆解)(已完结)
前言: 小编打算近期更俩三期类的专栏,一些常用的专集类,给大家分好类别总结和详细的代码举例解释。 今天是除夕,小编先祝贺大家除夕快乐啦!! 今天是第六个 java.lang.Math 包中的 java.util.Random类 我…...
Java后端之AOP
AOP:面向切面编程,本质是面向特定方法编程 引入依赖: <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-aop</artifactId></dependency>示例:记录…...
【信息系统项目管理师-选择真题】2008上半年综合知识答案和详解
更多内容请见: 备考信息系统项目管理师-专栏介绍和目录 文章目录 【第1题】【第2题】【第3题】【第4题】【第5题】【第6题】【第7~8题】【第9题】【第10题】【第11题】【第12题】【第13题】【第14题】【第15题】【第16~20题】【第21题】【第22题】【第23题】【第24题】【第25题…...
go到底是什么意思:对go的猜测或断言
go这个单词,简单地讲,表示“走或去”的意思: go v.去;走 认真想想,go是一个非常神秘的单词,g-和o-这两个字母,为什么就会表达“去;走”的意思呢?它的字面义或本质&…...
零刻SER7接口及配置跑分
今天入手了一台迷你机-零刻SER7 ,不得不说这机身是真的小啊,相比于传统台式机,它几乎不占空间,可以轻松放置在桌面、电视柜甚至背包中,非常适合需要频繁移动或空间有限的用户。尽管体积小巧,但零刻SER7在性…...
【Java基础-41.5】深入解析Java异常链:构建清晰的错误追踪体系
在Java编程中,异常处理是保证程序健壮性和可维护性的重要部分。然而,在实际开发中,异常往往不是孤立发生的,而是由一系列相关的异常引发的。为了更好地理解和处理这种复杂的异常场景,Java引入了 异常链(Exc…...
【Python实现机器遗忘算法】复现2023年TNNLS期刊算法UNSIR
【Python实现机器遗忘算法】复现2023年TNNLS期刊算法UNSIR 1 算法原理 Tarun A K, Chundawat V S, Mandal M, et al. Fast yet effective machine unlearning[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023. 本文提出了一种名为 UNSIR(Un…...
Object类(3)
大家好,今天继续给大家介绍一下object类中的方法,那么话不多说,来看。 hashcode()这个方法,帮我们算了一个具体的对象位置,这里面涉及到数据结构,简单认为它是个内存地址,然后调用Integer.toHexString ()将这个地址以16进制输出。 该方法是一…...
Zookeeper(32) Zookeeper的版本号(version)是什么?
在 Zookeeper 中,每个节点都有多个版本号(version),用于跟踪节点的状态变化。版本号帮助 Zookeeper 实现乐观并发控制,确保在并发环境中的数据一致性。主要的版本号包括: version:数据版本号&a…...
C# as 和 is 运算符区别和用法
前言 在C#中,as 和 is 关键字都用于处理类型转换的运算符,但它们有不同的用途和行为。本文我们将详细解释这两个运算符的区别和用法。 is 运算符 is 运算符用于检查对象是否是某个特定类型,或者是否可以转换为该类型。它返回一个布尔值 (t…...
求解旅行商问题的三种精确性建模方法,性能差距巨大
文章目录 旅行商问题介绍三种模型对比求解模型1决策变量目标函数约束条件Python代码 求解模型2决策变量目标函数约束条件Python代码 求解模型3决策变量目标函数约束条件Python代码 三个模型的优势与不足 旅行商问题介绍 旅行商问题 (Traveling Salesman Problem, TSP) 是一个经…...
SQL-leetcode—1193. 每月交易 I
1193. 每月交易 I 表:Transactions ---------------------- | Column Name | Type | ---------------------- | id | int | | country | varchar | | state | enum | | amount | int | | trans_date | date | ---------------------- id 是这个表的主键。 该表包含…...
智慧医疗能源事业线深度画像分析(上)
引言 医疗行业作为现代社会的关键基础设施,其能源消耗与环境影响正日益受到关注。随着全球"双碳"目标的推进和可持续发展理念的深入,智慧医疗能源事业线应运而生,致力于通过创新技术与管理方案,重构医疗领域的能源使用模式。这一事业线融合了能源管理、可持续发…...
云启出海,智联未来|阿里云网络「企业出海」系列客户沙龙上海站圆满落地
借阿里云中企出海大会的东风,以**「云启出海,智联未来|打造安全可靠的出海云网络引擎」为主题的阿里云企业出海客户沙龙云网络&安全专场于5.28日下午在上海顺利举办,现场吸引了来自携程、小红书、米哈游、哔哩哔哩、波克城市、…...
大语言模型如何处理长文本?常用文本分割技术详解
为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
Java多线程实现之Thread类深度解析
Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...
【数据分析】R版IntelliGenes用于生物标志物发现的可解释机器学习
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍流程步骤1. 输入数据2. 特征选择3. 模型训练4. I-Genes 评分计算5. 输出结果 IntelliGenesR 安装包1. 特征选择2. 模型训练和评估3. I-Genes 评分计…...
使用Spring AI和MCP协议构建图片搜索服务
目录 使用Spring AI和MCP协议构建图片搜索服务 引言 技术栈概览 项目架构设计 架构图 服务端开发 1. 创建Spring Boot项目 2. 实现图片搜索工具 3. 配置传输模式 Stdio模式(本地调用) SSE模式(远程调用) 4. 注册工具提…...
Proxmox Mail Gateway安装指南:从零开始配置高效邮件过滤系统
💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storms…...
