当前位置: 首页 > news >正文

Julia 之 @btime 精准测量详解

Julia 语言因其高性能和易用性在科学计算、数据分析等领域获得了广泛关注。在性能优化中,精准测量代码执行时间是至关重要的任务,而 Julia 提供了强大的工具 @btime 来辅助这一任务。本文将围绕 Julia 的 @btime 来展开,帮助读者深入理解并高效使用这一功能。

目录

  1. 简介
  2. @btime 的基础概念
  3. @btime 的使用方法
  4. 常见实践
  5. 最佳实践
  6. 小结
  7. 参考资料

简介

性能优化是计算密集型应用中的关键环节。了解每段代码的执行时间有助于识别性能瓶颈,从而制定优化策略。@btime 是 Julia 的 BenchmarkTools 包中的一个宏,专用于精确测量代码块的执行时间。相比于简单的时间测量工具,@btime 更加可靠和简洁。

@btime 的基础概念

@btimeBenchmarkTools 包的一部分,用于精确衡量代码执行时间。它不仅考虑了多次测量的平均时间,还消除了 JIT 编译所造成的延迟,适合高精度的性能分析。

在使用 @btime 之前,需要先安装并加载 BenchmarkTools 包:

using Pkg
Pkg.add("BenchmarkTools")using BenchmarkTools

@btime 的使用方法

@btime 的基本使用方法非常简单:

@btime expression

例如,要测量一个向量相加的时间:

using BenchmarkToolsv = rand(1000)
@btime sum($v)

这里使用 $ 符号来防止重复计算和引入不必要的开销。$ 符号反映了变量的预估值,而非重新计算的结果,这在精准测量中非常重要。

常见实践

测量函数性能

@btime 可用于测量任意函数的执行时间。例如,定义一个简单的排序函数并测量其性能:

function mysort(arr)return sort(arr)
enddata = rand(10000)
@btime mysort($data)

比较算法性能

利用 @btime 可以比较不同算法或实现的效率:

function loopsum(arr)s = 0.0for i in arrs += iendreturn s
end@btime sum($v)
@btime loopsum($v)

参数化测量

@btime 允许测量带有参数的函数,非常适合于性能测试和参数优化:

function power(x, n)return x^n
end@btime power(2, $5)

最佳实践

  1. 消除编译时间:在测量代码块性能时,确保已经经过 JIT 编译,以获取准确测量结果。
  2. 使用 $ 符号:避免不必要的内存分配。
  3. 多次测量@btime 默认执行多次测量并返回最优结果,确保测量的稳定性。
  4. 可重现性:务必确保每次测量的环境一致,包括输入数据的一致性。

小结

Julia 的 @btime 是一款强大的性能测量工具,提供了精确的执行时间分析能力。在软件开发过程中,善用这一工具可以帮助我们在代码优化中事半功倍。通过本文的介绍,希望读者能够掌握 @btime 的使用技巧,从而为项目的性能提升提供参考。

参考资料

  • Julia 官方文档
  • BenchmarkTools.jl 文档
  • 性能分析与优化指南

通过本文的学习,我们深入了解了 Julia 语言中 @btime 的使用场景和方法,为实际性能优化提供了一个有力的工具。希望每位读者都能在自己的项目中实践这些技巧,打造更为高效的应用程序。

相关文章:

Julia 之 @btime 精准测量详解

Julia 语言因其高性能和易用性在科学计算、数据分析等领域获得了广泛关注。在性能优化中,精准测量代码执行时间是至关重要的任务,而 Julia 提供了强大的工具 btime 来辅助这一任务。本文将围绕 Julia 的 btime 来展开,帮助读者深入理解并高效…...

【Django教程】用户管理系统

Get Started With Django User Management 开始使用Django用户管理 By the end of this tutorial, you’ll understand that: 在本教程结束时,您将了解: Django’s user authentication is a built-in authentication system that comes with pre-conf…...

【机器学习】自定义数据集 使用pytorch框架实现逻辑回归并保存模型,然后保存模型后再加载模型进行预测

一、使用pytorch框架实现逻辑回归 1. 数据部分: 首先自定义了一个简单的数据集,特征 X 是 100 个随机样本,每个样本一个特征,目标值 y 基于线性关系并添加了噪声。将 numpy 数组转换为 PyTorch 张量,方便后续在模型中…...

C语言连接Mysql

目录 C语言连接Mysql下载 mysql 开发库 方法介绍mysql_init()mysql_real_connect()mysql_query()mysql_store_result()mysql_num_fields()mysql_fetch_fields()mysql_fetch_row()mysql_free_result()mysql_close() 完整代码 C语言连接Mysql 下载 mysql 开发库 方法一&#xf…...

Windows上通过Git Bash激活Anaconda

在Windows上配置完Anaconda后,普遍通过Anaconda Prompt激活虚拟环境并执行Python,如下图所示: 有时需要连续执行多个python脚本时,直接在Anaconda Prompt下可以通过在以下方式,即命令间通过&&连接,…...

面试经典150题——图

文章目录 1、岛屿数量1.1 题目链接1.2 题目描述1.3 解题代码1.4 解题思路 2、被围绕的区域2.1 题目链接2.2 题目描述2.3 解题代码2.4 解题思路 3、克隆图3.1 题目链接3.2 题目描述3.3 解题代码3.4 解题思路 4、除法求值4.1 题目链接4.2 题目描述4.3 解题代码4.4 解题思路 5、课…...

学习数据结构(1)时间复杂度

1.数据结构和算法 (1)数据结构是计算机存储、组织数据的方式,指相互之间存在⼀种或多种特定关系的数据元素的集合 (2)算法就是定义良好的计算过程,取一个或一组的值为输入,并产生出一个或一组…...

项目集成GateWay

文章目录 1.环境搭建1.创建sunrays-common-cloud-gateway-starter模块2.目录结构3.自动配置1.GateWayAutoConfiguration.java2.spring.factories 3.pom.xml4.注意:GateWay不能跟Web一起引入! 1.环境搭建 1.创建sunrays-common-cloud-gateway-starter模块…...

【Ubuntu】使用远程桌面协议(RDP)在Windows上远程连接Ubuntu

使用远程桌面协议(RDP)在Windows上远程连接Ubuntu 远程桌面协议(RDP)是一种允许用户通过图形界面远程控制计算机的协议。本文将详细介绍如何在Ubuntu上安装和配置xrdp,并通过Windows的远程桌面连接工具访问Ubuntu。 …...

python3+TensorFlow 2.x 基础学习(一)

目录 TensorFlow 2.x基础 1、安装 TensorFlow 2.x 2、TensorFlow 2.x 基础概念 2、1 Eager Execution 2、2 TensorFlow 张量(Tensor) 3、使用Keras构建神经网络模型 3、1 构建 Sequential 模型 3、2 编译模型 1、Optimizer(优化器&a…...

《活出人生的厚度》

《活出人生的厚度》可以从不同角度来理解和实践,以下为你提供一些拓展内容: ### 不断学习与自我提升 - **持续知识更新**:保持对新知识的渴望,利用各种渠道学习,如在线课程、学术讲座、行业研讨会等。例如&#xff0c…...

安装 docker 详解

在平常的开发工作中,我们经常需要部署项目。随着 Docker 容器的出现,大大提高了部署效率。Docker 容器包含了应用程序运行所需的所有依赖,避免了换环境运行问题。可以在短时间内创建、启动和停止容器,大大提高了应用的部署速度&am…...

【Rust自学】16.3. 共享状态的并发

喜欢的话别忘了点赞、收藏加关注哦(加关注即可阅读全文),对接下来的教程有兴趣的可以关注专栏。谢谢喵!(・ω・) 16.3.1. 使用共享来实现并发 还记得Go语言有一句名言是这么说的:Do not commun…...

开发者交流平台项目部署到阿里云服务器教程

本文使用PuTTY软件在本地Windows系统远程控制Linux服务器;其中,Windows系统为Windows 10专业版,Linux系统为CentOS 7.6 64位。 1.工具软件的准备 maven:https://archive.apache.org/dist/maven/maven-3/3.6.1/binaries/apache-m…...

【2024年华为OD机试】 (B卷,100分)- 乘坐保密电梯(JavaScriptJava PythonC/C++)

一、问题描述 问题描述 我们需要从0楼到达指定楼层m,乘坐电梯的规则如下: 给定一个数字序列,每次根据序列中的数字n,上升n层或下降n层。前后两次的方向必须相反,且首次方向向上。必须使用序列中的所有数字,不能只使用一部分。目标是到达指定楼层m,如果无法到达,则给出…...

maven的打包插件如何使用

默认的情况下,当直接执行maven项目的编译命令时,对于结果来说是不打第三方包的,只有一个单独的代码jar,想要打一个包含其他资源的完整包就需要用到maven编译插件,使用时分以下几种情况 第一种:当只是想单纯…...

solidity高阶 -- 线性继承

Solidity是一种面向合约的高级编程语言,用于编写智能合约。在Solidity中,多线继承是一个强大的特性,允许合约从多个父合约继承属性和方法。本文将详细介绍Solidity中的多线继承,并通过不同的实例展示其使用方法和注意事项。 在Sol…...

国内外大语言模型领域发展现状与预期

在数字化浪潮中,大语言模型已成为人工智能领域的关键力量,深刻影响着各个行业的发展轨迹。下面我们将深入探讨国内外大语言模型领域的发展现状以及未来预期。 一、发展现状 (一)国外进展 美国的引领地位:OpenAI 的 …...

【Leetcode 热题 100】416. 分割等和子集

问题背景 给你一个 只包含正整数 的 非空 数组 n u m s nums nums。请你判断是否可以将这个数组分割成两个子集,使得两个子集的元素和相等。 数据约束 1 ≤ n u m s . l e n g t h ≤ 200 1 \le nums.length \le 200 1≤nums.length≤200 1 ≤ n u m s [ i ] ≤ …...

C语言------数组从入门到精通

1.一维数组 目标:通过思维导图了解学习一维数组的核心知识点: 1.1定义 使用 类型名 数组名[数组长度]; 定义数组。 // 示例: int arr[5]; 1.2一维数组初始化 数组的初始化可以分为静态初始化和动态初始化两种方式。 它们的主要区别在于初始化的时机和内存分配的方…...

OpenLayers 可视化之热力图

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来

一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出:JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中,随机数的生成看似简单,却隐藏着许多玄机。无论是生成密码、加密密钥,还是创建安全令牌,随机数的质量直接关系到系统的安全性。Jav…...

零基础设计模式——行为型模式 - 责任链模式

第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...

云原生玩法三问:构建自定义开发环境

云原生玩法三问:构建自定义开发环境 引言 临时运维一个古董项目,无文档,无环境,无交接人,俗称三无。 运行设备的环境老,本地环境版本高,ssh不过去。正好最近对 腾讯出品的云原生 cnb 感兴趣&…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

Python Einops库:深度学习中的张量操作革命

Einops(爱因斯坦操作库)就像给张量操作戴上了一副"语义眼镜"——让你用人类能理解的方式告诉计算机如何操作多维数组。这个基于爱因斯坦求和约定的库,用类似自然语言的表达式替代了晦涩的API调用,彻底改变了深度学习工程…...

Caliper 配置文件解析:fisco-bcos.json

config.yaml 文件 config.yaml 是 Caliper 的主配置文件,通常包含以下内容: test:name: fisco-bcos-test # 测试名称description: Performance test of FISCO-BCOS # 测试描述workers:type: local # 工作进程类型number: 5 # 工作进程数量monitor:type: - docker- pro…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

Java求职者面试指南:Spring、Spring Boot、Spring MVC与MyBatis技术解析

Java求职者面试指南&#xff1a;Spring、Spring Boot、Spring MVC与MyBatis技术解析 一、第一轮基础概念问题 1. Spring框架的核心容器是什么&#xff1f;它的作用是什么&#xff1f; Spring框架的核心容器是IoC&#xff08;控制反转&#xff09;容器。它的主要作用是管理对…...