当前位置: 首页 > news >正文

数据结构选讲 (更新中)

参考 smWCDay7 数据结构选讲2 by yyc

可能会补充的:

  • AT_cf17_final_j TreeMSTF2 Boruvka算法

目录

  • AT_cf17_final_j Tree MST

AT_cf17_final_j Tree MST

link
题意
给定一棵 n n n 个点的树,点有点权 w i w_i wi,边有边权。建立一张完全图 G G G,节点 u , v u, v u,v 之间的边长为 w u + w v + d i s ( u , v ) w_u + w_v + dis(u, v) wu+wv+dis(u,v) 。求 G G G M S T MST MST (最小生成树)的边权和。

  • n ≤ 2 × 1 0 5 , 1 ≤ w i ≤ 1 0 9 n \le 2 \times 10^5 ,1 \le w_i \le 10^9 n2×1051wi109

思路
前置指示:点分治

引理:边 e e e 在边集 E E E 的最小生成树中,则对于任意 E 0 ⊆ E E_0 ⊆ E E0E,e 也在边集 E 0 E_0 E0 的最小生成树中。
证明:考虑 kruskal
推论:将边分为若干组,分别求最小生成树,再合并求最小生成树,结果正确。

题目是说建立一张完全图然后求其的 M S T MST MST ,但是这样的边是 n 2 n^2 n2 级别的,考虑去掉一些多余的边,只保留有用的边。所以可以将完全图 G G G 分成很多个边集,分别求 M S T MST MST (不必强制联通),然后保留有用边,最后再综合求 M S T MST MST 就是答案了。
考虑 点分治,以重心为根,将树分成几个子树,那么就只用处理跨越重心的边即可。
d i s i dis_i disi 表示 点 i i i 到重心的距离,跨越重心的边 ( u , v ) (u,v) (u,v),边权是 w u + d i s u + w v + d i s v w_u + dis_u + w_v + dis_v wu+disu+wv+disv 。由于每个点 i i i 都要贡献至少一次 w i + d i s i w_i+dis_i wi+disi,另外一边肯定选最小的 w j + d i s j w_j+dis_j wj+disj ,所以我们只需要选择 w i + d i s i w_i + dis_i wi+disi 最小的点,让它和所有其他点连边,该菊花图就是最小生成树。(在同一棵子树内连了边也不影响结果,因为它们的边权比真实值要大 d i s u + d i s v > d i s u , v dis_u + dis_v \gt dis_{u,v} disu+disv>disu,v )。这样边的数量就减到了 n l o g n nlogn nlogn,总时间复杂度为 O ( n l o g 2 n ) O(nlog^2n) O(nlog2n)

好像还有一种方法,要用到 Boruvka算法 ,后续可能会学……

代码

#include<bits/stdc++.h>
#define ll long long
using namespace std;
const int maxn=2e5+5;int idx,head[maxn];
struct EDGE{ int v,next; ll w; }e[maxn*2];
void Insert(int u,int v,ll w){e[++idx]={v,head[u],w};head[u]=idx;
}int siz[maxn],mxson[maxn],pot[maxn],tn;
bool vis[maxn];
void Dfs(int x,int fa){pot[++tn]=x,siz[x]=1,mxson[x]=0;for(int i=head[x];i;i=e[i].next){int v=e[i].v;if(!vis[v]&&v!=fa){Dfs(v,x);siz[x]+=siz[v];mxson[x]=max(mxson[x],siz[v]);}}
}int Get_root(int x){tn=0,Dfs(x,0);int root=0;for(int i=1;i<=tn;i++){mxson[pot[i]]=max(mxson[pot[i]],tn-siz[pot[i]]);if(!root||mxson[root]>mxson[pot[i]]) root=pot[i]; }return root;
}int id;
ll a[maxn],dis[maxn];
void Dfs2(int x,int fa){for(int i=head[x];i;i=e[i].next){int v=e[i].v;if(!vis[v]&&v!=fa){dis[v]=dis[x]+e[i].w;Dfs2(v,x);}}if(!id||a[x]+dis[x]<a[id]+dis[id]) id=x;
}int cnt;
struct EDGE2{ int u,v; ll w; }te[maxn*20];
void Solve(int rt){dis[rt]=0,id=0,Dfs2(rt,0);for(int i=1;i<=tn;i++)te[++cnt]={id,pot[i],a[id]+dis[id]+a[pot[i]]+dis[pot[i]]};vis[rt]=1;for(int i=head[rt];i;i=e[i].next){int v=e[i].v;if(!vis[v]) Solve(Get_root(v));}
}int fa[maxn];
int Find_fa(int x){ return fa[x]==x?x:fa[x]=Find_fa(fa[x]); }int main(){int n; cin>>n;for(int i=1;i<=n;i++)cin>>a[i];for(int i=1;i<n;i++){int x,y,z; cin>>x>>y>>z;Insert(x,y,z),Insert(y,x,z);}Solve(Get_root(1));sort(te+1,te+cnt+1,[](EDGE2 a,EDGE2 b){ return a.w<b.w; });for(int i=1;i<=n;i++)fa[i]=i;ll ans=0;for(int i=1;i<=cnt;i++){int fx=Find_fa(te[i].u),fy=Find_fa(te[i].v);if(fx!=fy) fa[fy]=fx,ans+=te[i].w;}cout<<ans;return 0;
}

相关文章:

数据结构选讲 (更新中)

参考 smWCDay7 数据结构选讲2 by yyc 。 可能会补充的&#xff1a; AT_cf17_final_j TreeMST 的 F2 Boruvka算法 目录 AT_cf17_final_j Tree MST AT_cf17_final_j Tree MST link 题意 给定一棵 n n n 个点的树&#xff0c;点有点权 w i w_i wi​&#xff0c;边有边权。建立…...

OpenBMC:简介

通常在服务器主板上&#xff0c;有一个独立的微处理器&#xff0c;叫作BMC(Baseboard Manager Controller)&#xff0c;用于与主机(host)进行通信&#xff0c;提供带外的方式查询服务器的状态和信息&#xff0c;并进行管理服务器。 OpenBMC是Linux Foundation的开源BMC项目&am…...

java 正则表达式匹配Matcher 类

Matcher 类 用法 在 Java 中&#xff0c;Matcher 类是用于匹配正则表达式的工具&#xff0c;而 group() 方法是 Matcher 类中的一个重要方法&#xff0c;用于提取匹配结果中的捕获组&#xff08;captured groups&#xff09;。以下是对 group() 方法的详细解释&#xff1a; 1.…...

【HarmonyOS之旅】基于ArkTS开发(三) -> 兼容JS的类Web开发(三)

目录 1 -> 生命周期 1.1 -> 应用生命周期 1.2 -> 页面生命周期 2 -> 资源限定与访问 2.1 -> 资源限定词 2.2 -> 资源限定词的命名要求 2.3 -> 限定词与设备状态的匹配规则 2.4 -> 引用JS模块内resources资源 3 -> 多语言支持 3.1 -> 定…...

CSS(快速入门)

欢迎大家来到我的博客~欢迎大家对我的博客提出指导&#xff0c;有错误的地方会改进的哦~点击这里了解更多内容 目录 一、什么是CSS?二、基本语法规范三、CSS选择器3.1 标签选择器3.2 id选择器3.3 class选择器3.4 通配符选择器3.5 复合选择器 四、常用CSS样式4.1 color4.2 font…...

使用 concurrently 实现前后端一键启动

使用 concurrently 实现前后端一键启动 本文适合&#xff1a; 前后端分离项目&#xff08;如 React Node.js&#xff09;&#xff0c;希望通过一条命令同时启动前端和后端服务。 工具链&#xff1a; Node.js、npm、concurrently。 耗时&#xff1a; 3 分钟。 文章目录 使用 c…...

常见端口的攻击思路

端口号端口说明攻击方向21/22/69FTP/TFTP文件传输协议匿名上传/下载、嗅探、爆破2049NFS服务配置不当139Sanba服务爆破、远程代码执行389Ldap目录访问协议注入、匿名访问、弱口令22SSH远程连接爆破、SSH映射隧道搭建、文件传输23Telnet远程连接爆破、嗅探、弱口令3389RDP远程桌…...

大数据治理实战:架构、方法与最佳实践

&#x1f4dd;个人主页&#x1f339;&#xff1a;一ge科研小菜鸡-CSDN博客 &#x1f339;&#x1f339;期待您的关注 &#x1f339;&#x1f339; 1. 引言 大数据治理是确保数据质量、合规性和安全性的重要手段&#xff0c;尤其在数据驱动决策和人工智能应用日益普及的背景下&…...

忘记宝塔的访问地址怎么找

在linux中安装宝塔面板后会生成网址、账号和密码 如果网址忘记了那将进不去宝塔面板该怎么办呢&#xff1f; bt命令 我们输入 bt 命令的时候&#xff0c;是在根目录里面进行操作的。 / bt 我们根据自己的需要&#xff0c;选择对应的数字就可以了。 bt 14 输入 14 查看面板默…...

SQL教程-基础语法

INSERT INTO 新增数据 INSERT INTO 数据表名 VALUES (值1,值2,值3,...) DELETE 删除数据 DELETE FROM 数据表名 WHERE 查询条件 UPDATE 修改数据 UPDATE 数据表名 SET 字段1 值1, 字段2值2, ... WHERE 查询条件 SELECT 查询数据 #查询数据 SELECT 字段1, 字段2, ... FROM 数…...

shell脚本批量修改文件名之方法(The Method of Batch Modifying File Names in Shell Scripts)

shell脚本批量修改文件名方法 我们可以使用Shell脚本来实现这个功能。Shell脚本是一种用于自动化任务的编程语言&#xff0c;它可以在Unix/Linux操作系统上运行。在这个脚本中&#xff0c;我们将使用一个for循环来遍历目标目录下的所有文件&#xff0c;并使用mv命令将每个文件…...

组合模式 - 组合模式的实现

引言 组合模式&#xff08;Composite Pattern&#xff09;是一种结构型设计模式&#xff0c;它允许你将对象组合成树形结构来表示“部分-整体”的层次结构。组合模式使得客户端可以统一地处理单个对象和组合对象&#xff0c;从而简化了代码的复杂性。本文将详细介绍如何在C中实…...

视频外绘技术总结:Be-Your-Outpainter、Follow-Your-Canvas、M3DDM

Diffusion Models专栏文章汇总:入门与实战 前言:视频Inpaint的技术很火,但是OutPaint却热度不高,这篇博客总结比较经典的几篇视频Outpaint技术。其实Outpaint在runway等工具上很火,可是学术界对此关注比较少,博主从这三年的顶会中找到了最具代表性的三篇论文解读。 目录 …...

【硬件测试】基于FPGA的QPSK+帧同步系统开发与硬件片内测试,包含高斯信道,误码统计,可设置SNR

目录 1.算法仿真效果 2.算法涉及理论知识概要 2.1QPSK 2.2 帧同步 3.Verilog核心程序 4.开发板使用说明和如何移植不同的开发板 5.完整算法代码文件获得 1.算法仿真效果 本文是之前写的文章 《基于FPGA的QPSK帧同步系统verilog开发,包含testbench,高斯信道,误码统计,可…...

c++面试:类定义为什么可以放到头文件中

这个问题是刚了解预编译的时候产生的疑惑。 声明是指向编译器告知某个变量、函数或类的存在及其类型&#xff0c;但并不分配实际的存储空间。声明的主要目的是让编译器知道如何解析程序中的符号引用。定义不仅告诉编译器实体的存在&#xff0c;还会为该实体分配存储空间&#…...

PythonFlask框架

文章目录 处理 Get 请求处理 POST 请求应用 app.route(/tpost, methods[POST]) def testp():json_data request.get_json()if json_data:username json_data.get(username)age json_data.get(age)return jsonify({username: username测试,age: age})从 flask 中导入了 Flask…...

Kotlin开发(六):Kotlin 数据类,密封类与枚举类

引言 想象一下&#xff0c;你是个 Kotlin 开发者&#xff0c;敲着代码忽然发现业务代码中需要一堆冗长的 POJO 类来传递数据。烦得很&#xff1f;别急&#xff0c;Kotlin 贴心的 数据类 能帮你自动生成 equals、hashCode&#xff0c;直接省时省力&#xff01;再想想需要多种状…...

冬天适合养什么鱼?

各位鱼友们&#xff0c;冬天来了&#xff0c;是不是还在为养什么鱼而烦恼&#xff1f;别担心&#xff0c;今天就来给大家好好推荐一些适合冬天养的鱼&#xff0c;让你的水族箱在寒冷的冬天也能生机勃勃&#xff01; 一、金鱼&#xff1a;冬日里的“小暖男” 金鱼绝对是冬季养鱼…...

【C++动态规划 状态压缩】2597. 美丽子集的数目|2033

本文涉及知识点 C动态规划 LeetCode2597. 美丽子集的数目 给你一个由正整数组成的数组 nums 和一个 正 整数 k 。 如果 nums 的子集中&#xff0c;任意两个整数的绝对差均不等于 k &#xff0c;则认为该子数组是一个 美丽 子集。 返回数组 nums 中 非空 且 美丽 的子集数目。…...

前端-Rollup

Rollup 是一个用于 JavaScript 的模块打包工具&#xff0c;它将小的代码片段编译成更大、更复杂的代码&#xff0c;例如库或应用程序。它使用 JavaScript 的 ES6 版本中包含的新标准化代码模块格式&#xff0c;而不是以前的 CommonJS 和 AMD 等特殊解决方案。ES 模块允许你自由…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中&#xff0c;时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志&#xff0c;到供应链系统的物流节点时间戳&#xff0c;时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库&#xff0c;其日期时间类型的…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器

第一章 引言&#xff1a;语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域&#xff0c;文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量&#xff0c;支撑着搜索引擎、推荐系统、…...

Mac下Android Studio扫描根目录卡死问题记录

环境信息 操作系统: macOS 15.5 (Apple M2芯片)Android Studio版本: Meerkat Feature Drop | 2024.3.2 Patch 1 (Build #AI-243.26053.27.2432.13536105, 2025年5月22日构建) 问题现象 在项目开发过程中&#xff0c;提示一个依赖外部头文件的cpp源文件需要同步&#xff0c;点…...

Vite中定义@软链接

在webpack中可以直接通过符号表示src路径&#xff0c;但是vite中默认不可以。 如何实现&#xff1a; vite中提供了resolve.alias&#xff1a;通过别名在指向一个具体的路径 在vite.config.js中 import { join } from pathexport default defineConfig({plugins: [vue()],//…...

深入浅出Diffusion模型:从原理到实践的全方位教程

I. 引言&#xff1a;生成式AI的黎明 – Diffusion模型是什么&#xff1f; 近年来&#xff0c;生成式人工智能&#xff08;Generative AI&#xff09;领域取得了爆炸性的进展&#xff0c;模型能够根据简单的文本提示创作出逼真的图像、连贯的文本&#xff0c;乃至更多令人惊叹的…...

Python常用模块:time、os、shutil与flask初探

一、Flask初探 & PyCharm终端配置 目的: 快速搭建小型Web服务器以提供数据。 工具: 第三方Web框架 Flask (需 pip install flask 安装)。 安装 Flask: 建议: 使用 PyCharm 内置的 Terminal (模拟命令行) 进行安装,避免频繁切换。 PyCharm Terminal 配置建议: 打开 Py…...

怎么开发一个网络协议模块(C语言框架)之(六) ——通用对象池总结(核心)

+---------------------------+ | operEntryTbl[] | ← 操作对象池 (对象数组) +---------------------------+ | 0 | 1 | 2 | ... | N-1 | +---------------------------+↓ 初始化时全部加入 +------------------------+ +-------------------------+ | …...

使用python进行图像处理—图像变换(6)

图像变换是指改变图像的几何形状或空间位置的操作。常见的几何变换包括平移、旋转、缩放、剪切&#xff08;shear&#xff09;以及更复杂的仿射变换和透视变换。这些变换在图像配准、图像校正、创建特效等场景中非常有用。 6.1仿射变换(Affine Transformation) 仿射变换是一种…...

Git 切换到旧提交,同时保证当前修改不丢失

在 Git 中&#xff0c;可以通过以下几种方式切换到之前的提交&#xff0c;同时保留当前的修改 1. 使用 git checkout 创建临时分离头指针&#xff08;推荐用于查看代码&#xff09; git checkout <commit-hash>这会让你进入"分离头指针"状态&#xff0c;你可…...