【C++动态规划 状态压缩】2597. 美丽子集的数目|2033
本文涉及知识点
C++动态规划
LeetCode2597. 美丽子集的数目
给你一个由正整数组成的数组 nums 和一个 正 整数 k 。
如果 nums 的子集中,任意两个整数的绝对差均不等于 k ,则认为该子数组是一个 美丽 子集。
返回数组 nums 中 非空 且 美丽 的子集数目。
nums 的子集定义为:可以经由 nums 删除某些元素(也可能不删除)得到的一个数组。只有在删除元素时选择的索引不同的情况下,两个子集才会被视作是不同的子集。
示例 1:
输入:nums = [2,4,6], k = 2
输出:4
解释:数组 nums 中的美丽子集有:[2], [4], [6], [2, 6] 。
可以证明数组 [2,4,6] 中只存在 4 个美丽子集。
示例 2:
输入:nums = [1], k = 1
输出:1
解释:数组 nums 中的美丽数组有:[1] 。
可以证明数组 [1] 中只存在 1 个美丽子集。
提示:
1 <= nums.length <= 20
1 <= nums[i], k <= 1000
动态规划+状态压缩
动态规划的状态表示
dp[mask] 表示(1<<j)&mask的数字已经使用是否是完美子集。空间复杂度:O(2nn)。
动态规划的填表顺序
mask从0到大
动态规划的转移方程
v[i]的如下位为1,其它为0:a,第i位。 b,第j位 abs(nums[j]-nums[i])==k。
!dp[mask]忽略。
if(v[i]&mask)则忽略i。
dp[mask|(1<<i)] = true
单个状态时间复杂度:O(n),总时间复杂度:O(2nn)
动态规划的初始化
dp[0]=true,其它全为false。
动态规划的返回值
dp中true的数量-1。
代码
核心代码
class Solution {public:int beautifulSubsets(vector<int>& nums, int k) {const int N = nums.size();const int MC = 1 << N;vector<int> v(N);for (int i = 0; i < N; i++) {v[i] = 1 << i;for (int j = 0; j < N; j++) {if (abs(nums[i] - nums[j]) == k) {v[i] |= (1 << j);}}}vector<bool> dp(MC);for (int i = 0; i < N; i++) {dp[1 << i] = true;}for (int i = 0; i < MC; i++) {if (!dp[i])continue;for (int j = 0; j < N; j++) {if (i & v[j])continue;dp[i | (1 << j)] = true;}}const int ans = count(dp.begin(), dp.end(), true);return ans;}};
单元测试
int k;TEST_METHOD(TestMethod11){nums = { 2,4,6 },k=2;auto res = Solution().beautifulSubsets(nums, k);AssertEx(4, res);}TEST_METHOD(TestMethod12){nums = { 1 }, k = 1;auto res = Solution().beautifulSubsets(nums, k);AssertEx(1, res);}
优化
v[i] 改成v[i<<i]
枚举后续状态:
j1= i&-i j2 = i-j1
如果v[j1]&j2 则i是非法状态。否则dp[i] = dp[j2]
class Solution {public:int beautifulSubsets(vector<int>& nums, int k) {const int N = nums.size();const int MC = 1 << N;vector<int> v(MC);for (int i = 0; i < N; i++) { for (int j = 0; j < N; j++) {if (abs(nums[i] - nums[j]) == k) {v[1<<i] |= (1 << j);}}}vector<bool> dp(MC);for (int i = 0; i < N; i++) {dp[1 << i] = true;}for (int i = 1; i < MC; i++) {const int j1 = i & -i;const int j2 = i - j1;if (j2 & v[j1])continue;dp[i] = (0==j2)||dp[j2];}const int ans = count(dp.begin(), dp.end(), true);return ans;}};

扩展阅读
| 我想对大家说的话 |
|---|
| 工作中遇到的问题,可以按类别查阅鄙人的算法文章,请点击《算法与数据汇总》。 |
| 学习算法:按章节学习《喜缺全书算法册》,大量的题目和测试用例,打包下载。重视操作 |
| 有效学习:明确的目标 及时的反馈 拉伸区(难度合适) 专注 |
| 闻缺陷则喜(喜缺)是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。 |
| 子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。 |
| 如果程序是一条龙,那算法就是他的是睛 |
| 失败+反思=成功 成功+反思=成功 |
视频课程
先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771
如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176
测试环境
操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

相关文章:
【C++动态规划 状态压缩】2597. 美丽子集的数目|2033
本文涉及知识点 C动态规划 LeetCode2597. 美丽子集的数目 给你一个由正整数组成的数组 nums 和一个 正 整数 k 。 如果 nums 的子集中,任意两个整数的绝对差均不等于 k ,则认为该子数组是一个 美丽 子集。 返回数组 nums 中 非空 且 美丽 的子集数目。…...
前端-Rollup
Rollup 是一个用于 JavaScript 的模块打包工具,它将小的代码片段编译成更大、更复杂的代码,例如库或应用程序。它使用 JavaScript 的 ES6 版本中包含的新标准化代码模块格式,而不是以前的 CommonJS 和 AMD 等特殊解决方案。ES 模块允许你自由…...
20【变量的深度理解】
一说起变量,懂点编程的都知道,但是在理解上可能还不够深 变量就是存储空间,电脑上的存储空间有永久(硬盘)和临时(内存条)两种,永久数据重启电脑后依旧存在,临时数据只…...
大数据学习之Kafka消息队列、Spark分布式计算框架一
Kafka消息队列 章节一.kafka入门 4.kafka入门_消息队列两种模式 5.kafka入门_架构相关名词 Kafka 入门 _ 架构相关名词 事件 记录了世界或您的业务中 “ 发生了某事 ” 的事实。在文档中 也称为记录或消息。当您向 Kafka 读取或写入数据时,您以事件的 形式执行…...
基于Flask的旅游系统的设计与实现
【Flask】基于Flask的旅游系统的设计与实现(完整系统源码开发笔记详细部署教程)✅ 目录 一、项目简介二、项目界面展示三、项目视频展示 一、项目简介 该系统采用Python作为后端开发语言,结合前端Bootstrap框架,为用户提供了丰富…...
“AI视频智能分析系统:让每一帧视频都充满智慧
嘿,大家好!今天咱们来聊聊一个特别厉害的东西——AI视频智能分析系统。想象一下,如果你有一个超级聪明的“视频助手”,它不仅能自动识别视频中的各种元素,还能根据内容生成详细的分析报告,是不是感觉特别酷…...
算法随笔_31:移动零
上一篇:算法随笔_30: 去除重复字母-CSDN博客 题目描述如下: 给定一个数组 nums,编写一个函数将所有 0 移动到数组的末尾,同时保持非零元素的相对顺序。 请注意 ,必须在不复制数组的情况下原地对数组进行操作。 示例 1: 输入: nums [0,1,…...
改进候鸟优化算法之二:基于混沌映射的候鸟优化算法(MBO-CM)
基于混沌映射的候鸟优化算法(Migrating Birds Optimization based on Chaotic Mapping,MBO-CM)是一种结合了混沌映射与候鸟优化算法(Migrating Birds Optimization,MBO)的优化方法。 一、候鸟优化算法(MBO)简介 候鸟优化算法是一种自然启发的元启发式算法,由Duman等人…...
在Docker 容器中安装 Oracle 19c
在 Docker 容器中安装 Oracle 19c 是可行的,但它相较于其他数据库(如 MySQL、PostgreSQL 等)会复杂一些,因为 Oracle 数据库有一些特定的要求,如操作系统和库的依赖,以及许可证问题。 不过,Ora…...
使用Avalonia UI实现DataGrid
1.Avalonia中的DataGrid的使用 DataGrid 是客户端 UI 中一个非常重要的控件。在 Avalonia 中,DataGrid 是一个独立的包 Avalonia.Controls.DataGrid,因此需要单独通过 NuGet 安装。接下来,将介绍如何安装和使用 DataGrid 控件。 2.安装 Dat…...
MySQL中的读锁与写锁:概念与作用深度剖析
MySQL中的读锁与写锁:概念与作用深度剖析 在MySQL数据库的并发控制机制中,读锁和写锁起着至关重要的作用。它们是确保数据在多用户环境下能够正确、安全地被访问和修改的关键工具。 一、读锁(共享锁)概念 读锁,也称为…...
Dest1ny漏洞库:用友 U8 Cloud ReleaseRepMngAction SQL 注入漏洞(CNVD-2024-33023)
大家好,今天是Dest1ny漏洞库的专题!! 会时不时发送新的漏洞资讯!! 大家多多关注,多多点赞!!! 0x01 产品简介 用友U8 Cloud是用友推出的新一代云ERP,主要聚…...
python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算
【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位异或运算: 两个等长度二进制数上下对齐,相…...
【面试】【编程范式总结】面向对象编程(OOP)、函数式编程(FP)和响应式编程(RP)
一、编程范式总结 编程范式是指开发软件时采用的一种方法论或思维方式,主要包括面向对象编程(OOP)、**函数式编程(FP)和响应式编程(RP)**等。这些范式的不同特性和适用场景,帮助开发…...
创建要素图层和表视图
操作方法: 下面按照步骤学习如何使用Make Feature Layer和Make Table View工具 1.在arcmap中打开活动地图文档 2.导入arcpy模块 3.设置工作空间 arcpy.env.workspace "<>" 4.使用try语句,使用Make Feature Layer工具创建内存副本 try:flayer arcpy.Ma…...
51单片机入门_01_单片机(MCU)概述(使用STC89C52芯片;使用到的硬件及课程安排)
文章目录 1. 什么是单片机1.1 微型计算机的组成1.2 微型计算机的应用形态1.3 单板微型计算机1.4 单片机(MCU)1.4.1 单片机内部结构1.4.2 单片机应用系统的组成 1.5 80C51单片机系列1.5.1 STC公司的51单片机1.5.1 STC公司单片机的命名规则 2. 单片机的特点及应用领域2.1 单片机的…...
万物皆有联系:驼鸟和布什
布什?一块布十块钱吗?不是,大家都知道,美国有两个总统,叫老布什和小布什,因为两个布什总统(父子俩),大家就这么叫来着,目的是为了好区分。 布什总统的布什&a…...
【最后203篇系列】007 使用APS搭建本地定时任务
说明 最大的好处是方便。 其实所有任务的源头,应该都是通过定时的方式,在每个时隙发起轮询。当然在任务的后续传递中,可以通过CallBack或者WebHook的方式,以事件的形态进行。这样可以避免长任务执行的过程中进行等待和轮询。 总结…...
go gin配置air
一、依赖下载 安装最新,且在你工作区下进行安装,我的是D:/GO是我的工作区,所有项目都在目录下的src, go install github.com/air-verse/airlatest 如果出现类似报错: 将图中第三行 github.com/air-verse/air 替换最…...
Java定时任务实现方案(五)——时间轮
时间轮 这篇笔记,我们要来介绍实现Java定时任务的第五个方案,使用时间轮,以及该方案的优点和缺点。 时间轮是一种高效的定时任务调度算法,特别适用于大量定时任务的场景。时间轮的定时任务实现,可以使用DelayQueue…...
深入剖析AI大模型:大模型时代的 Prompt 工程全解析
今天聊的内容,我认为是AI开发里面非常重要的内容。它在AI开发里无处不在,当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗",或者让翻译模型 "将这段合同翻译成商务日语" 时,输入的这句话就是 Prompt。…...
WEB3全栈开发——面试专业技能点P2智能合约开发(Solidity)
一、Solidity合约开发 下面是 Solidity 合约开发 的概念、代码示例及讲解,适合用作学习或写简历项目背景说明。 🧠 一、概念简介:Solidity 合约开发 Solidity 是一种专门为 以太坊(Ethereum)平台编写智能合约的高级编…...
重启Eureka集群中的节点,对已经注册的服务有什么影响
先看答案,如果正确地操作,重启Eureka集群中的节点,对已经注册的服务影响非常小,甚至可以做到无感知。 但如果操作不当,可能会引发短暂的服务发现问题。 下面我们从Eureka的核心工作原理来详细分析这个问题。 Eureka的…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
小木的算法日记-多叉树的递归/层序遍历
🌲 从二叉树到森林:一文彻底搞懂多叉树遍历的艺术 🚀 引言 你好,未来的算法大神! 在数据结构的世界里,“树”无疑是最核心、最迷人的概念之一。我们中的大多数人都是从 二叉树 开始入门的,它…...
LLaMA-Factory 微调 Qwen2-VL 进行人脸情感识别(二)
在上一篇文章中,我们详细介绍了如何使用LLaMA-Factory框架对Qwen2-VL大模型进行微调,以实现人脸情感识别的功能。本篇文章将聚焦于微调完成后,如何调用这个模型进行人脸情感识别的具体代码实现,包括详细的步骤和注释。 模型调用步骤 环境准备:确保安装了必要的Python库。…...
热烈祝贺埃文科技正式加入可信数据空间发展联盟
2025年4月29日,在福州举办的第八届数字中国建设峰会“可信数据空间分论坛”上,可信数据空间发展联盟正式宣告成立。国家数据局党组书记、局长刘烈宏出席并致辞,强调该联盟是推进全国一体化数据市场建设的关键抓手。 郑州埃文科技有限公司&am…...
node.js的初步学习
那什么是node.js呢? 和JavaScript又是什么关系呢? node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说, 需要在node.js的环境上进行当JavaScript作为前端开发语言来说,需要在浏览器的环境上进行 Node.js 可…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
ubuntu清理垃圾
windows和ubuntu 双系统,ubuntu 150GB,开发用,基本不装太多软件。但是磁盘基本用完。 1、查看home目录 sudo du -h -d 1 $HOME | grep -v K 上面的命令查看$HOME一级目录大小,发现 .cache 有26GB,.local 有几个GB&am…...
