当前位置: 首页 > news >正文

python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算

【0】基础定义

按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。

按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。

 按位异或运算: 两个等长度二进制数上下对齐,相同取0,其余取1。

 按位取反运算:一个二进制数,0变1,1变0。

【2】引言

在前序学习进程中,调用cv2.bitwise()系列函数实现了图像的按位与计算,相关文章链接包括且不限于:

python学opencv|读取图像(四十三)使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十五)增加掩模:使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

python学opencv|读取图像(四十六)使用cv2.bitwise_or()函数实现图像按位或运算-CSDN博客

python学opencv|读取图像(四十七)使用cv2.bitwise_not()函数实现图像按位取反运算-CSDN博客

python学opencv|读取图像(四十八)使用cv2.bitwise_xor()函数实现图像按位异或运算-CSDN博客

图像的按位与计算,是通过对各个像素点上的BGR值进行操作:先把十进制数转化为二进制数,再进行按位计算,然后再转回十进制数输出。

由于前序文章的重点是对比按位计算前后图像的色彩变化,除按位与计算外,没有详细深究二进制按位计算过程。因此本文以之前按位与计算为基础,对此展开专题探索。

按位与计算的原理探索文章链接为:

python学opencv|读取图像(四十三)使用cv2.bitwise_and()函数实现图像按位与运算-CSDN博客

【3】项目可行性分析

以输入的外部图像为基础,调用cv2.bitwise()系列函数让图像进行按位计算后,读取相关点的BGR值,使用np.bitwise()系列函数对cv2.bitwise()系列函数按位计算进行原理呈现。

【4】代码测试

首先引入相关模块和图像:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcx.png') #读取图像
dst=src #输出图像
gray_src=cv.cvtColor(src,cv.COLOR_BGR2GRAY) #转化为灰度图
dstg=gray_src #输出图像
print('初始图像像素大小为',src.shape)
print('初始图像灰度图像素大小为',gray_src.shape)

 除了按位取反操作之外,其他按位操作均需要在引入一张图像:

# 定义第二个图像
image = np.zeros(src.shape, np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
print('第二个图像像素大小为',image.shape)
image[50:350, :, :] = 180  # 行掩模
image[:,120:200,: ] = 255  # 列掩模
image[:, :, 2] = 120  # 第二个通道值

然后要引入一个8位单通道的二维矩阵定义掩模:

#定义掩模矩阵
mask = np.zeros((gray_src.shape), np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
mask[280:350, :] = 155  # 水平区域
mask[:,150:350] = 100  # 竖直区域

之后就调用cv2.bitwise()系列函数执行按位计算:

#执行位运算
#按位与运算
img_and=cv.bitwise_and(src,image) #按位与运算
img_and_mask=cv.bitwise_and(src,image,mask=mask) #按位与运算
#按位或运算
img_or=cv.bitwise_or(src,image) #按位或运算
img_or_mask=cv.bitwise_or(src,image,mask=mask) #按位或运算
#按位异或运算
img_xor=cv.bitwise_xor(src,image) #按位异或运算
img_xor_mask=cv.bitwise_xor(src,image,mask=mask) #按位异或计算
#按位取反运算
img_not=cv.bitwise_not(src) #按位取反运算
img_not_mask=cv.bitwise_not(src,mask=mask) #按位异或计算

按位计算执行以后,图像的BGR值发生变化,这时候使用np.bitwise()系列函数图像的BGR值进行按位计算,以对cv2.bitwise()系列函数按位计算进行原理呈现:

#显示BGR值
print("初始图像dst像素数为[300,180]位置处的BGR=", dst[300,180],'=a')  # 获取像素数为[100,100]位置处的BGR
print("第二个图像image像素数为[300,180]位置处的BGR=", image[300,180],'=b')  # 获取像素数为[100,100]位置处的BGR
print("img_and像素数为[300,180]位置处的BGR=", img_and[300,180],'=c')  # 获取像素数为[100,100]位置处的BGR
print("img_and_mask像素数为[300,180]位置处的BGR=", img_and_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_or像素数为[300,180]位置处的BGR=", img_or[300,180],'=d')  # 获取像素数为[100,100]位置处的BGR
print("img_or_mask像素数为[300,180]位置处的BGR=", img_or_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_xor像素数为[300,180]位置处的BGR=", img_xor[300,180],'=e')  # 获取像素数为[100,100]位置处的BGR
print("img_xor_mask像素数为[300,180]位置处的BGR=", img_xor_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_not像素数为[300,180]位置处的BGR=", img_not[300,180],'=f')  # 获取像素数为[100,100]位置处的BGR
print("img_not_mask像素数为[300,180]位置处的BGR=", img_not_mask[300,180])  # 获取像素数为[100,100]位置处的BGRa=np.zeros((1,3),np.uint8) #定义矩阵
a=dst[300,180] #将像素点BGR直接赋值给矩阵-初始图像
b=np.zeros((1,3),np.uint8) #定义矩阵
b=image[300,180] #将像素点BGR直接赋值给矩阵-第二个图像
c=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_and
d=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_or
e=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_xor
f=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_not# 二进制按位与计算
for i in range(3):  # 计数print('a', '[0,', i, ']=', a[i], '的二进制转化值=',bin(a[i]))  # 输出二进制转化值print('b', '[0,', i, ']=', b[i], '的二进制转化值=',bin(b[i]))  # 输出二进制转化值c[0, i] = np.bitwise_and(a[i], b[i])  # 赋值按位与计算值print('c', '[0,', i, ']=', c[0,i], '的二进制转化值=', bin(c[0,i]))  # 输出二进制转化值d[0, i] = np.bitwise_or(a[i], b[i])  # 赋值按位或计算值print('d', '[0,', i, ']=', d[0,i], '的二进制转化值=', bin(d[0,i]))  # 输出二进制转化值e[0, i] = np.bitwise_xor(a[i], b[i])  # 赋值按位或计算值print('e', '[0,', i, ']=', e[0, i], '的二进制转化值=', bin(e[0, i]))  # 输出二进制转化值f[0, i] = np.bitwise_not(a[i])  # 赋值按位或计算值print('f', '[0,', i, ']=', e[0, i], '的二进制转化值=', bin(f[0, i]))  # 输出二进制转化值print('c', [0, i], '是a[0,', i, ']和b[0', i, ']按位与的值=np.bitwise_and(a[0,',i, '],b[0,',i,'])=', c[0, i])  # 输出按位与计算值print('d', [0, i], '是a[0,', i, ']和b[0', i, ']按位或的值=np.bitwise_or(a[0,',i, '],b[0,',i,'])=', d[0, i])  # 输出按位或计算值print('e', [0, i], '是a[0,', i, ']和b[0', i, ']按位异或的值=np.bitwise_xor(a[0,',i, '],b[0,',i,'])=', e[0, i])  # 输出按位异或计算值print('f', [0, i], '是a[0,', i, '         ]按位取反的值=np.bitwise_not(a[0,',i, '])=', f[0, i])  # 输出按位取反计算值# 输出矩阵结果
print('a=', a)  # 输出矩阵
print('b=', b)  # 输出矩阵
print('c=', c)  # 输出矩阵
print('d=', d)  # 输出矩阵
print('e=', e)  # 输出矩阵
print('f=', f)  # 输出矩阵

由于主要关注数值变化,因此未直接显示相关图像,其余代码可作为辅助学习使用:

#合并图像
himg_and_andmask = np.hstack((img_and,img_and_mask))
himg_or_ormask   = np.hstack((img_or,img_or_mask))
himg_xor_xormask = np.hstack((img_xor,img_xor_mask))
himg_not_notmask = np.hstack((img_not,img_not_mask))# 显示和保存定义的图像
#cv.imshow('dst', dst)  # 显示图像
#cv.imshow('image', image)  # 显示图像
#cv.imshow('mask', mask)  # 显示图像
#cv.imshow('himg_and_andmask', himg_and_andmask)  # 显示图像
#cv.imshow('himg_or_ormask', himg_or_ormask)  # 显示图像
#cv.imshow('himg_xor_xormask', himg_xor_xormask)  # 显示图像
#cv.imshow('himg_not_notmask', himg_not_notmask)  # 显示图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

代码运行使用的相关图像有:

图1  初始图像srcx.png

图2  第二张图像image.png 

  图3 掩模mask.png

代码运行后,获得的相关文字输出为:

图4 图像基本属性

图5 特定像素点BGR值读取

读取到特定像素点[300,180]处的BGR之后,首先需要关注:

初始图像在此处的BGR值为:[132  80 121]

第二张图像在此处的BGR值为:[255 255 120]

其余位置的数据,其实是通过cv2.bitwise()系列函数按位计算之后获得的。为追溯这个计算过程,继续获得了输出文字:

图6 特定像素点BGR值-按位计算第一个点

需要注意的是 ,e[0,0]和f[0,0]在0b后面只有7位数字,这是因为0b01111011在0b之后的0确实没有用处,只有占位的作用,所以python就直接省略了。

图7 特定像素点BGR值-按位计算第二个点

a[0,1]和c[0,1]在0b后面只有7位数字,也是因为在0b之后的0确实没有用处,只有占位的作用,所以python就直接省略了。

图8 特定像素点BGR值-按位计算第二个点 

e[0,2]是异或计算的结果,两个二进制数上下对齐,相同取0,其余取1,只有最右侧的位置不同,其余均相同,所以最后的结果是1。

f[0,2]是按位取反的结果,虽然a[0,2]只有7位,但首位的0取反之后就是1,所以f[0,2]有8位数字。

此时的完整代码为:

import cv2 as cv # 引入CV模块
import numpy as np #引入numpy模块# 读取图片-直接转化灰度图
src = cv.imread('srcx.png') #读取图像
dst=src #输出图像
gray_src=cv.cvtColor(src,cv.COLOR_BGR2GRAY) #转化为灰度图
dstg=gray_src #输出图像
print('初始图像像素大小为',src.shape)
print('初始图像灰度图像素大小为',gray_src.shape)# 定义第二个图像
image = np.zeros(src.shape, np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
print('第二个图像像素大小为',image.shape)
image[50:350, :, :] = 180  # 行掩模
image[:,120:200,: ] = 255  # 列掩模
image[:, :, 2] = 120  # 第二个通道值#定义掩模矩阵
mask = np.zeros((gray_src.shape), np.uint8)  # 定义一个竖直和水平像素与初始图像等大的全0矩阵
mask[280:350, :] = 155  # 水平区域
mask[:,150:350] = 100  # 竖直区域#执行位运算
#按位与运算
img_and=cv.bitwise_and(src,image) #按位与运算
img_and_mask=cv.bitwise_and(src,image,mask=mask) #按位与运算
#按位或运算
img_or=cv.bitwise_or(src,image) #按位或运算
img_or_mask=cv.bitwise_or(src,image,mask=mask) #按位或运算
#按位异或运算
img_xor=cv.bitwise_xor(src,image) #按位异或运算
img_xor_mask=cv.bitwise_xor(src,image,mask=mask) #按位异或计算
#按位取反运算
img_not=cv.bitwise_not(src) #按位取反运算
img_not_mask=cv.bitwise_not(src,mask=mask) #按位异或计算#显示BGR值
print("初始图像dst像素数为[300,180]位置处的BGR=", dst[300,180],'=a')  # 获取像素数为[100,100]位置处的BGR
print("第二个图像image像素数为[300,180]位置处的BGR=", image[300,180],'=b')  # 获取像素数为[100,100]位置处的BGR
print("img_and像素数为[300,180]位置处的BGR=", img_and[300,180],'=c')  # 获取像素数为[100,100]位置处的BGR
print("img_and_mask像素数为[300,180]位置处的BGR=", img_and_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_or像素数为[300,180]位置处的BGR=", img_or[300,180],'=d')  # 获取像素数为[100,100]位置处的BGR
print("img_or_mask像素数为[300,180]位置处的BGR=", img_or_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_xor像素数为[300,180]位置处的BGR=", img_xor[300,180],'=e')  # 获取像素数为[100,100]位置处的BGR
print("img_xor_mask像素数为[300,180]位置处的BGR=", img_xor_mask[300,180])  # 获取像素数为[100,100]位置处的BGR
print("img_not像素数为[300,180]位置处的BGR=", img_not[300,180],'=f')  # 获取像素数为[100,100]位置处的BGR
print("img_not_mask像素数为[300,180]位置处的BGR=", img_not_mask[300,180])  # 获取像素数为[100,100]位置处的BGRa=np.zeros((1,3),np.uint8) #定义矩阵
a=dst[300,180] #将像素点BGR直接赋值给矩阵-初始图像
b=np.zeros((1,3),np.uint8) #定义矩阵
b=image[300,180] #将像素点BGR直接赋值给矩阵-第二个图像
c=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_and
d=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_or
e=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_xor
f=np.zeros((1,3),np.uint8) #定义矩阵-np.bitwise_not# 二进制按位与计算
for i in range(3):  # 计数print('a', '[0,', i, ']=', a[i], '的二进制转化值=',bin(a[i]))  # 输出二进制转化值print('b', '[0,', i, ']=', b[i], '的二进制转化值=',bin(b[i]))  # 输出二进制转化值c[0, i] = np.bitwise_and(a[i], b[i])  # 赋值按位与计算值print('c', '[0,', i, ']=', c[0,i], '的二进制转化值=', bin(c[0,i]))  # 输出二进制转化值d[0, i] = np.bitwise_or(a[i], b[i])  # 赋值按位或计算值print('d', '[0,', i, ']=', d[0,i], '的二进制转化值=', bin(d[0,i]))  # 输出二进制转化值e[0, i] = np.bitwise_xor(a[i], b[i])  # 赋值按位或计算值print('e', '[0,', i, ']=', e[0, i], '的二进制转化值=', bin(e[0, i]))  # 输出二进制转化值f[0, i] = np.bitwise_not(a[i])  # 赋值按位或计算值print('f', '[0,', i, ']=', e[0, i], '的二进制转化值=', bin(f[0, i]))  # 输出二进制转化值print('c', [0, i], '是a[0,', i, ']和b[0', i, ']按位与的值=np.bitwise_and(a[0,',i, '],b[0,',i,'])=', c[0, i])  # 输出按位与计算值print('d', [0, i], '是a[0,', i, ']和b[0', i, ']按位或的值=np.bitwise_or(a[0,',i, '],b[0,',i,'])=', d[0, i])  # 输出按位或计算值print('e', [0, i], '是a[0,', i, ']和b[0', i, ']按位异或的值=np.bitwise_xor(a[0,',i, '],b[0,',i,'])=', e[0, i])  # 输出按位异或计算值print('f', [0, i], '是a[0,', i, '         ]按位取反的值=np.bitwise_not(a[0,',i, '])=', f[0, i])  # 输出按位取反计算值# 输出矩阵结果
print('a=', a)  # 输出矩阵
print('b=', b)  # 输出矩阵
print('c=', c)  # 输出矩阵
print('d=', d)  # 输出矩阵
print('e=', e)  # 输出矩阵
print('f=', f)  # 输出矩阵#合并图像
himg_and_andmask = np.hstack((img_and,img_and_mask))
himg_or_ormask   = np.hstack((img_or,img_or_mask))
himg_xor_xormask = np.hstack((img_xor,img_xor_mask))
himg_not_notmask = np.hstack((img_not,img_not_mask))# 显示和保存定义的图像
#cv.imshow('dst', dst)  # 显示图像
#cv.imshow('image', image)  # 显示图像
#cv.imshow('mask', mask)  # 显示图像
#cv.imshow('himg_and_andmask', himg_and_andmask)  # 显示图像
#cv.imshow('himg_or_ormask', himg_or_ormask)  # 显示图像
#cv.imshow('himg_xor_xormask', himg_xor_xormask)  # 显示图像
#cv.imshow('himg_not_notmask', himg_not_notmask)  # 显示图像cv.waitKey()  # 图像不关闭
cv.destroyAllWindows()  # 释放所有窗口

综上所述:

a.图像的按位与计算,是通过对各个像素点上的BGR值进行操作:先把十进制数转化为二进制数,再进行按位计算,然后再转回十进制数输出。

b.使用np.bitwise()系列函数对cv2.bitwise()系列函数按位计算进行原理呈现中继续发现,python在输出二进制的过程中,会省略0b之后紧跟的0。

【5】总结

专题探索了cv2.bitwise()系列函数按位计算时的BGR值二进制转化和按位计算过程。

相关文章:

python学opencv|读取图像(四十九)原理探究:使用cv2.bitwise()系列函数实现图像按位运算

【0】基础定义 按位与运算:两个等长度二进制数上下对齐,全1取1,其余取0。 按位或运算:两个等长度二进制数上下对齐,有1取1,其余取0。 按位异或运算: 两个等长度二进制数上下对齐,相…...

【面试】【编程范式总结】面向对象编程(OOP)、函数式编程(FP)和响应式编程(RP)

一、编程范式总结 编程范式是指开发软件时采用的一种方法论或思维方式,主要包括面向对象编程(OOP)、**函数式编程(FP)和响应式编程(RP)**等。这些范式的不同特性和适用场景,帮助开发…...

创建要素图层和表视图

操作方法: 下面按照步骤学习如何使用Make Feature Layer和Make Table View工具 1.在arcmap中打开活动地图文档 2.导入arcpy模块 3.设置工作空间 arcpy.env.workspace "<>" 4.使用try语句,使用Make Feature Layer工具创建内存副本 try:flayer arcpy.Ma…...

51单片机入门_01_单片机(MCU)概述(使用STC89C52芯片;使用到的硬件及课程安排)

文章目录 1. 什么是单片机1.1 微型计算机的组成1.2 微型计算机的应用形态1.3 单板微型计算机1.4 单片机(MCU)1.4.1 单片机内部结构1.4.2 单片机应用系统的组成 1.5 80C51单片机系列1.5.1 STC公司的51单片机1.5.1 STC公司单片机的命名规则 2. 单片机的特点及应用领域2.1 单片机的…...

万物皆有联系:驼鸟和布什

布什&#xff1f;一块布十块钱吗&#xff1f;不是&#xff0c;大家都知道&#xff0c;美国有两个总统&#xff0c;叫老布什和小布什&#xff0c;因为两个布什总统&#xff08;父子俩&#xff09;&#xff0c;大家就这么叫来着&#xff0c;目的是为了好区分。 布什总统的布什&a…...

【最后203篇系列】007 使用APS搭建本地定时任务

说明 最大的好处是方便。 其实所有任务的源头&#xff0c;应该都是通过定时的方式&#xff0c;在每个时隙发起轮询。当然在任务的后续传递中&#xff0c;可以通过CallBack或者WebHook的方式&#xff0c;以事件的形态进行。这样可以避免长任务执行的过程中进行等待和轮询。 总结…...

go gin配置air

一、依赖下载 安装最新&#xff0c;且在你工作区下进行安装&#xff0c;我的是D:/GO是我的工作区&#xff0c;所有项目都在目录下的src&#xff0c; go install github.com/air-verse/airlatest 如果出现类似报错&#xff1a; 将图中第三行 github.com/air-verse/air 替换最…...

Java定时任务实现方案(五)——时间轮

时间轮 这篇笔记&#xff0c;我们要来介绍实现Java定时任务的第五个方案&#xff0c;使用时间轮&#xff0c;以及该方案的优点和缺点。 ​ 时间轮是一种高效的定时任务调度算法&#xff0c;特别适用于大量定时任务的场景。时间轮的定时任务实现&#xff0c;可以使用DelayQueue…...

【事务管理】

目录 一. 介绍与操作二. Spring事务管理三. 事务四大特性 \quad 一. 介绍与操作 \quad \quad 二. Spring事务管理 \quad 推荐加在经常进行增删改的方法上 \quad 三. 事务四大特性 \quad ctrlaltt...

Highcharts 柱形图:深入解析与最佳实践

Highcharts 柱形图:深入解析与最佳实践 引言 Highcharts 是一个功能强大的图表库,它允许用户轻松地在网页上创建各种类型的图表。其中,柱形图因其直观的展示方式,在数据分析、业务报告等领域得到了广泛应用。本文将深入解析 Highcharts 柱形图,包括其基本用法、高级特性…...

js笔记(黑马程序员)

js&#xff08;day2&#xff09; 一、运算符 1.赋值运算符 运算符作用加法赋值-减法赋值*乘法复制/除法赋值%取余赋值 2.一元运算符 符号作用说明自增变量自身的值加1&#xff0c;如X--自减变量自身的值减1&#xff0c;如X-- 3.比较运算符 运算符作用>左边是否大于右…...

Mac m1,m2,m3芯片使用nvm安装node14报错

使用nvm安装了node 12/16/18都没有问题&#xff0c;到14就报错了。第一次看到这个报错有点懵&#xff0c;查询资料发现是Mac芯片的问题。 Issue上提供了两个方案&#xff1a; 1、为了在arm64的Mac上安装node 14&#xff0c;需要使用Rosseta&#xff0c;可以通过以下命令安装 …...

LeetCode:63. 不同路径 II

跟着carl学算法&#xff0c;本系列博客仅做个人记录&#xff0c;建议大家都去看carl本人的博客&#xff0c;写的真的很好的&#xff01; 代码随想录 LeetCode&#xff1a;63. 不同路径 II 给定一个 m x n 的整数数组 grid。一个机器人初始位于 左上角&#xff08;即 grid[0][0]…...

安装zsh并美化

0 Zsh 是一种功能强大的 shell&#xff0c;通常用于替代默认的 Bash shell。它为命令行提供了更多的功能&#xff0c;例如自动补全、强大的模式匹配和主题支持等。 Oh My Zsh 是用于管理 Zsh 配置的框架。 powerlevel10k是样式&#xff0c;通过p10k configure脚本可以调节自己…...

读量子霸权18读后总结与感想兼导读

1. 基本信息 量子霸权 【美】加来道雄 著 中信出版集团股份有限公司,2024年4月出版 1.1. 读薄率 书籍总字数281千字&#xff0c;笔记总字数65977字。 读薄率65977281000≈23.48% 1.2. 读厚方向 量子宇宙 从掷骰子到阿尔法狗&#xff1a;趣谈概率 上帝掷骰子吗&#xf…...

统计学中的样本概率论中的样本

不知道当初谁想的把概率论和数理统计合并&#xff0c;作为一门课。这本身是可以合并&#xff0c;完整的一条线&#xff0c;看这里。但是&#xff0c;作为任课老师应该从整体上交代清楚&#xff0c;毕竟是两个学科&#xff0c;不同的学科合并必然会有各种不协调的问题。 举个最…...

HTML 符号详解

HTML 符号详解 引言 HTML(超文本标记语言)符号是HTML文档中用来表示特殊字符的标记。这些符号在日常网页设计和开发中扮演着重要角色,特别是在需要显示版权、商标、货币符号等特殊字符时。本文将详细介绍HTML符号的用法、类型以及如何在HTML文档中插入这些符号。 HTML符号…...

蓝桥杯练习日常|c/c++竞赛常用库函数(下)

书接上回......蓝桥杯算法日常|c\c常用竞赛函数总结备用-CSDN博客 目录 书接上回......https://blog.csdn.net/weixin_47011416/article/details/145290017 1、二分查找 2、lower_bound uper_bound 3、memset&#xff08;&#xff09; 函数原型 参数说明 返回值 常见用…...

Python vLLM 实战应用指南

文章目录 1. vLLM 简介2. 安装 vLLM3. 快速开始3.1 加载模型并生成文本3.2 参数说明 4. 实战应用场景4.1 构建聊天机器人示例对话&#xff1a; 4.2 文本补全输出示例&#xff1a; 4.3 自定义模型服务启动服务调用服务 5. 性能优化5.1 GPU 加速5.2 动态批处理 6. 总结 vLLM 是一…...

.NET MAUI 入门学习指南

引言 在当今移动应用和跨平台开发的热潮中,.NET MAUI(Multi - platform App UI)应运而生,为开发者提供了一种高效、统一的方式来构建跨多个平台(如 iOS、Android、Windows 等)的原生应用。它整合了 Xamarin.Forms 的优点,并在此基础上进行了诸多改进和创新,使得开发者…...

JavaScript系列(49)--游戏引擎实现详解

JavaScript游戏引擎实现详解 &#x1f3ae; 今天&#xff0c;让我们深入探讨JavaScript的游戏引擎实现。游戏引擎是一个复杂的系统&#xff0c;它需要处理渲染、物理、音频、输入等多个方面&#xff0c;让我们一步步实现一个基础但功能完整的游戏引擎。 游戏引擎基础概念 &am…...

AI如何帮助解决生活中的琐碎难题?

引言&#xff1a;AI已经融入我们的日常生活 你有没有遇到过这样的情况——早上匆忙出门却忘了带钥匙&#xff0c;到了公司才想起昨天的会议资料没有打印&#xff0c;或者下班回家还在纠结晚饭吃什么&#xff1f;这些看似微不足道的小事&#xff0c;往往让人疲惫不堪。而如今&a…...

K8s运维管理平台 - KubeSphere 3.x 和4.x 使用分析:功能较强,UI美观

目录标题 Lic使用感受优点&#xff1a;优化点&#xff1a; 实操首页项目 | 应用负载 | 配置 | 定制资源定义存储监控告警集群设置 **KubeSphere 3.x** 和 **4.x**1. **架构变化**&#xff1a;2. **多集群管理**&#xff1a;3. **增强的 DevOps 功能**&#xff1a;4. **监控与日…...

芯片AI深度实战:基础篇之langchain

基于ollama, langchain,可以构建一个自己的知识库&#xff0c;比如这个 Build Your Own RAG App: A Step-by-Step Guide to Setup LLM locally using Ollama, Python, and ChromaDB | HackerNoon 这是因为&#xff1a; 以上范例就实现了这样一个流程&#xff1a; 系列文章&…...

WordPress使用(1)

1. 概述 WordPress是一个开源博客框架&#xff0c;配合不同主题&#xff0c;可以有多种展现方式&#xff0c;博客、企业官网、CMS系统等&#xff0c;都可以很好的实现。 官网&#xff1a;博客工具、发布平台和内容管理系统 – WordPress.org China 简体中文&#xff0c;这里可…...

单机伪分布Hadoop详细配置

目录 1. 引言2. 配置单机Hadoop2.1 下载并解压JDK1.8、Hadoop3.3.62.2 配置环境变量2.3 验证JDK、Hadoop配置 3. 伪分布Hadoop3.1 配置ssh免密码登录3.2 配置伪分布Hadoop3.2.1 修改hadoop-env.sh3.2.2 修改core-site.xml3.2.3 修改hdfs-site.xml3.2.4 修改yarn-site.xml3.2.5 …...

【高内聚】设计模式是如何让软件更好做到高内聚的?

高内聚&#xff08;High Cohesion&#xff09;是指模块内部的元素紧密协作&#xff0c;共同完成一个明确且相对独立的功能。就像高效的小团队&#xff0c;成员们目标一致&#xff0c;相互配合默契。 低耦合&#xff08;Loose Coupling&#xff09;是指模块之间的依赖较少&#…...

10.2 目录(文件夹)操作

版权声明&#xff1a;本文为博主原创文章&#xff0c;转载请在显著位置标明本文出处以及作者网名&#xff0c;未经作者允许不得用于商业目的。 10.2.1 DirectoryInfo类 DirectoryInfo类可以获得目录信息。 DirectoryInfo常用属性&#xff1a; Name&#xff1a;获取Director…...

LiteFlow Spring boot使用方式

文章目录 概述LiteFlow框架的优势规则调用逻辑规则组件定义组件内数据获取通过 DefaultContext自定义上下文 通过 组件规则定义数据通过预先传入数据 liteflow 使用 概述 在每个公司的系统中&#xff0c;总有一些拥有复杂业务逻辑的系统&#xff0c;这些系统承载着核心业务逻…...

OSCP:Windows 服务提权详解

在Windows操作系统中&#xff0c;服务是一种特殊的后台进程&#xff0c;它们通常以较高的权限&#xff08;如 SYSTEM 或 Administrator&#xff09;运行。攻击者可以通过控制服务的创建、配置或运行过程实现权限提升&#xff08;提权&#xff09;。本文将详细分析Windows服务提…...