【Block总结】高效多尺度注意力EMA,超越SE、CBAM、SA、CA等注意力|即插即用
论文信息
标题: Efficient Multi-Scale Attention Module with Cross-Spatial Learning
作者: Daliang Ouyang, Su He, Guozhong Zhang, Mingzhu Luo, Huaiyong Guo, Jian Zhan, Zhijie Huang
论文链接: https://arxiv.org/pdf/2305.13563v2
GitHub链接: https://github.com/YOLOonMe/EMA-attention-module

创新点
该论文提出了一种新颖的高效多尺度注意力模块(EMA),旨在通过跨空间学习来提升特征表示的效果,同时降低计算开销。EMA模块的设计重点在于:
- 信息保留: 在每个通道上保留信息,确保特征的完整性。
- 计算效率: 通过重塑部分通道为批处理维度,减少计算负担。
- 多尺度学习: 结合多尺度特征,增强模型对不同尺度信息的捕捉能力。
方法
EMA模块的核心方法包括:
-
通道重塑: 将部分通道重塑为批处理维度,并将通道维度分组为多个子特征,以实现更高效的信息处理。
-
跨维度交互: 通过跨维度交互,聚合两个并行分支的输出特征,捕获像素级的成对关系。
-
并行子网络: 设计多尺度并行子网络,以建立短期和长期依赖关系,从而增强特征表示能力。

EMA模块的信息保留与计算效率平衡
信息保留机制
EMA(Efficient Multi-Scale Attention)模块通过以下几种方式实现信息的有效保留:
-
通道重塑: EMA模块将部分通道重塑为批处理维度,并将通道维度分组为多个子特征。这种设计确保了每个通道的信息能够被有效保留,同时避免了通道维度的削减,从而增强了特征的表达能力[1][3]。
-
跨维度交互: 在EMA模块中,两个并行分支的输出特征通过跨维度交互进行聚合。这种交互机制能够捕捉到像素级的成对关系,从而进一步提升特征的丰富性和准确性[2][3]。
-
多尺度并行子网络: EMA模块采用了多尺度并行子网络结构,结合了1x1和3x3卷积核的特征处理。这种结构能够有效捕获不同尺度的信息,确保在特征提取过程中不会丢失重要信息[2][3]。
计算效率提升
在计算效率方面,EMA模块通过以下方式优化了计算过程:
-
减少计算开销: 通过将部分通道重塑为批处理维度,EMA模块能够在不显著增加计算成本的情况下,保持高效的信息处理。这种方法使得模型在处理大规模数据时更加高效[1][2]。
-
并行处理: EMA模块的设计允许多个子网络并行处理特征,这不仅提高了计算效率,还减少了模型的顺序处理需求,从而加快了整体计算速度[3]。
-
适度的模型尺寸: EMA模块的设计确保了模型的尺寸适中,适合在移动终端等资源受限的环境中部署。这种设计使得EMA模块在保持性能的同时,能够有效降低计算资源的消耗[3][2]。
EMA模块通过创新的设计实现了信息保留与计算效率的平衡。其通道重塑、跨维度交互和多尺度并行处理的策略,不仅确保了特征信息的完整性,还显著提高了计算效率。这使得EMA模块在计算机视觉任务中表现出色,尤其是在小目标检测和图像分类等应用中,展现了其广泛的应用潜力和实际意义。
效果
实验结果表明,EMA模块在多个计算机视觉任务中表现优异,尤其是在小目标检测和图像分类任务中,相较于传统的注意力机制(如ECA、CBAM、CA),EMA模块显著提高了特征表示的清晰度和准确性。
实验结果
在广泛的消融研究和实验中,EMA模块在以下数据集上进行了评估:
- CIFAR-100
- ImageNet-1k
- MS COCO
- VisDrone2019
实验结果显示,EMA模块在这些基准测试中均取得了优于现有方法的性能,尤其在小目标检测任务中,表现出明显的优势。
总结
Efficient Multi-Scale Attention Module with Cross-Spatial Learning通过创新的设计和有效的实现,成功地提升了计算机视觉任务中的特征表示能力,同时降低了计算复杂度。该模块的提出为未来的研究提供了新的思路,尤其是在需要高效处理大规模数据的应用场景中,EMA模块展现了其广泛的应用潜力。
代码
import torch
from torch import nnclass EMA(nn.Module):def __init__(self, channels, c2=None, factor=32):super(EMA, self).__init__()self.groups = factorassert channels // self.groups > 0self.softmax = nn.Softmax(-1)self.agp = nn.AdaptiveAvgPool2d((1, 1))self.pool_h = nn.AdaptiveAvgPool2d((None, 1))self.pool_w = nn.AdaptiveAvgPool2d((1, None))self.gn = nn.GroupNorm(channels // self.groups, channels // self.groups)self.conv1x1 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=1, stride=1, padding=0)self.conv3x3 = nn.Conv2d(channels // self.groups, channels // self.groups, kernel_size=3, stride=1, padding=1)def forward(self, x):b, c, h, w = x.size()group_x = x.reshape(b * self.groups, -1, h, w) # b*g,c//g,h,wx_h = self.pool_h(group_x)x_w = self.pool_w(group_x).permute(0, 1, 3, 2)hw = self.conv1x1(torch.cat([x_h, x_w], dim=2))x_h, x_w = torch.split(hw, [h, w], dim=2)x1 = self.gn(group_x * x_h.sigmoid() * x_w.permute(0, 1, 3, 2).sigmoid())x2 = self.conv3x3(group_x)x11 = self.softmax(self.agp(x1).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x12 = x2.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hwx21 = self.softmax(self.agp(x2).reshape(b * self.groups, -1, 1).permute(0, 2, 1))x22 = x1.reshape(b * self.groups, c // self.groups, -1) # b*g, c//g, hwweights = (torch.matmul(x11, x12) + torch.matmul(x21, x22)).reshape(b * self.groups, 1, h, w)return (group_x * weights.sigmoid()).reshape(b, c, h, w)if __name__ == "__main__":# 如果GPU可用,将模块移动到 GPUdevice = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 输入张量 (batch_size, channels, height, width)x = torch.randn(1,32,40,40).to(device)# 初始化 pconv 模块dim=32block = EMA(dim,factor=8)print(block)block = block.to(device)# 前向传播output = block(x)print("输入:", x.shape)print("输出:", output.shape)
输出结果:

相关文章:
【Block总结】高效多尺度注意力EMA,超越SE、CBAM、SA、CA等注意力|即插即用
论文信息 标题: Efficient Multi-Scale Attention Module with Cross-Spatial Learning 作者: Daliang Ouyang, Su He, Guozhong Zhang, Mingzhu Luo, Huaiyong Guo, Jian Zhan, Zhijie Huang 论文链接: https://arxiv.org/pdf/2305.13563v2 GitHub链接: https://github.co…...
Pwn 入门核心工具和命令大全
一、调试工具(GDB 及其插件) GDB 启动调试:gdb ./binary 运行程序:run 或 r 设置断点:break *0x地址 或 b 函数名 查看寄存器:info registers 查看内存:x/10wx 0x地址 (查看 10 个 …...
探索AI(chatgpt、文心一言、kimi等)提示词的奥秘
大家好,我是老六哥,我正在共享使用AI提高工作效率的技巧。欢迎关注我,共同提高使用AI的技能,让AI成功你的个人助理。 "AI提示词究竟是什么?" 这是许多初学者在接触AI时的共同疑问。 "我阅读了大量关于…...
利用飞书机器人进行 - ArXiv自动化检索推荐
相关作者的Github仓库 ArXivToday-Lark 使用教程 Step1 新建机器人 根据飞书官方机器人使用手册,新建自定义机器人,并记录好webhook地址,后续将在配置文件中更新该地址。 可以先完成到后续步骤之前,后续的步骤与安全相关&…...
小白爬虫冒险之反“反爬”:无限debugger、禁用开发者工具、干扰控制台...(持续更新)
背景浅谈 小白踏足JS逆向领域也有一年了,对于逆向这个需求呢主要要求就是让我们去破解**“反爬机制”**,即反“反爬”,脚本处理层面一般都是decipher网站对request设置的cipher,比如破解一个DES/AES加密拿到key。这篇文章先不去谈…...
Ubuntu中MySQL安装-02
服务器端安装 安装服务器端:在终端中输入如下命令,回车后,然后按照提示输入 sudo apt-get install mysql-server 当前使用的ubuntu镜像中已经安装好了mysql服务器端,无需再安装,并且设置成了开机自启动服务器用于接…...
大数据相关职位介绍之一(数据分析,数据开发,数据产品经理,数据运营)
大数据相关职位介绍之一 随着大数据、人工智能(AI)和机器学习的快速发展,数据分析与管理已经成为各行各业的重要组成部分。从互联网公司到传统行业的数字转型,数据相关职位在中国日益成为推动企业创新和提升竞争力的关键力量。以…...
使用DeepSeek API生成Markdown文件
DeepSeek技术应用与代码实现 一、DeepSeek简介 DeepSeek是一款强大的人工智能写作助手,能够根据用户输入的提示(Prompt)快速生成高质量的文章。它不仅支持批量生成文章,还能通过智能分段、Markdown转HTML等功能优化内容。此外&…...
java多线程学习笔记
文章目录 关键词1.什么是多线程以及使用场景?2.并发与并行3.多线程实现3.1继承 Thread 类实现3.2Runnable 接口方式实现3.3Callable接口/Future接口实现3.4三种方式总结 4.常见的成员方法(重点记忆)94.1setName/currentThread/sleep要点4.2线程的优先级…...
Manticore Search,新一代搜索引擎之王
吊打ES,新一代搜索引擎之王 概述 Manticore Search 是一个开源的分布式搜索引擎,专注于高性能和低延迟的搜索场景。 它基于 Sphinx 搜索引擎开发,继承了 Sphinx 的高效索引和查询能力,并在分布式架构、实时搜索、易用性等方面进…...
【MySQL】数据类型与表约束
目录 数据类型分类 数值类型 tinyint类型 bit类型 小数类型 字符串类型 日期和时间类型 enum和set 表的约束 空属性 默认值 列描述 zerofill 主键 自增长 唯一键 外键 数据类型分类 数值类型 tinyint类型 MySQL中,整形可以是有符号和无符号的&…...
CAG技术:提升LLM响应速度与质量
标题:CAG技术:提升LLM响应速度与质量 文章信息摘要: CAG(Cache-Augmented Generation)通过预加载相关知识到LLM的扩展上下文中,显著减少了检索延迟和错误,从而提升了响应速度和质量。与传统的R…...
上位机知识篇---Linux源码编译安装链接命令
文章目录 前言第一部分:Linux源码编译安装1. 安装编译工具2. 下载源代码3. 解压源代码4. 配置5. 编译6. 测试(可选)7. 安装8. 清理(可选)9.注意事项 第二部分:链接命令硬链接(Hard Link…...
科研绘图系列:R语言绘制线性回归连线图(line chart)
禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍加载R包数据下载导入数据数据预处理画图保存图片系统信息参考介绍 科研绘图系列:R语言绘制线性回归连线图(line chart) 加载R包 library(tidyverse) library(ggthemes) libra…...
将ollama迁移到其他盘(eg:F盘)
文章目录 1.迁移ollama的安装目录2.修改环境变量3.验证 背景:在windows操作系统中进行操作 相关阅读 :本地部署deepseek模型步骤 1.迁移ollama的安装目录 因为ollama默认安装在C盘,所以只能安装好之后再进行手动迁移位置。 # 1.迁移Ollama可…...
Oracle 创建用户和表空间
Oracle 创建用户和表空间 使用sys 账户登录 建立临时表空间 --建立临时表空间 CREATE TEMPORARY TABLESPACE TEMP_POS --创建名为TEMP_POS的临时表空间 TEMPFILE /oracle/oradata/POS/TEMP_POS.DBF -- 临时文件 SIZE 50M -- 其初始大小为50M AUTOEXTEND ON -- 支持…...
cursor ide配置远程ssh qt c++开发环境过程记录
cursor是啥就不介绍了,好像是目前最好用的ai ide,下面主要是配置远程ssh连接linux机器进行qt5 c程序运行的配置过程记录。 一、c_cpp_properties.json 在项目根目录的.vscode目录里面新建c_cpp_properties.json文件,根据你的实际情况配置该文…...
yolov5错误更改与相关参数详解(train.py)
1.错误更改 main中相关参数 if __name__ __main__:parser argparse.ArgumentParser()parser.add_argument(--weights, typestr, default, helpinitial weights path)parser.add_argument(--cfg, typestr, defaultmodels/yolov5s.yaml, helpmodel.yaml path)parser.add_arg…...
Python设计模式 - 组合模式
定义 组合模式(Composite Pattern) 是一种结构型设计模式,主要意图是将对象组织成树形结构以表示"部分-整体"的层次结构。这种模式能够使客户端统一对待单个对象和组合对象,从而简化了客户端代码。 组合模式有透明组合…...
css粘性定位超出指定宽度失效问题
展示效果 解决办法:外层容器添加display:grid即可 完整代码 <template><div class"box"><div class"line" v-for"items in 10"><div class"item" v-for"item in 8">drgg</div>&…...
3.3.1_1 检错编码(奇偶校验码)
从这节课开始,我们会探讨数据链路层的差错控制功能,差错控制功能的主要目标是要发现并且解决一个帧内部的位错误,我们需要使用特殊的编码技术去发现帧内部的位错误,当我们发现位错误之后,通常来说有两种解决方案。第一…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
Spring AI 入门:Java 开发者的生成式 AI 实践之路
一、Spring AI 简介 在人工智能技术快速迭代的今天,Spring AI 作为 Spring 生态系统的新生力量,正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务(如 OpenAI、Anthropic)的无缝对接&…...
EtherNet/IP转DeviceNet协议网关详解
一,设备主要功能 疆鸿智能JH-DVN-EIP本产品是自主研发的一款EtherNet/IP从站功能的通讯网关。该产品主要功能是连接DeviceNet总线和EtherNet/IP网络,本网关连接到EtherNet/IP总线中做为从站使用,连接到DeviceNet总线中做为从站使用。 在自动…...
面向无人机海岸带生态系统监测的语义分割基准数据集
描述:海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而,目前该领域仍面临一个挑战,即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...
在Mathematica中实现Newton-Raphson迭代的收敛时间算法(一般三次多项式)
考察一般的三次多项式,以r为参数: p[z_, r_] : z^3 (r - 1) z - r; roots[r_] : z /. Solve[p[z, r] 0, z]; 此多项式的根为: 尽管看起来这个多项式是特殊的,其实一般的三次多项式都是可以通过线性变换化为这个形式…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
C#学习第29天:表达式树(Expression Trees)
目录 什么是表达式树? 核心概念 1.表达式树的构建 2. 表达式树与Lambda表达式 3.解析和访问表达式树 4.动态条件查询 表达式树的优势 1.动态构建查询 2.LINQ 提供程序支持: 3.性能优化 4.元数据处理 5.代码转换和重写 适用场景 代码复杂性…...
【从零开始学习JVM | 第四篇】类加载器和双亲委派机制(高频面试题)
前言: 双亲委派机制对于面试这块来说非常重要,在实际开发中也是经常遇见需要打破双亲委派的需求,今天我们一起来探索一下什么是双亲委派机制,在此之前我们先介绍一下类的加载器。 目录 编辑 前言: 类加载器 1. …...
django blank 与 null的区别
1.blank blank控制表单验证时是否允许字段为空 2.null null控制数据库层面是否为空 但是,要注意以下几点: Django的表单验证与null无关:null参数控制的是数据库层面字段是否可以为NULL,而blank参数控制的是Django表单验证时字…...
