openRv1126 AI算法部署实战之——ONNX模型部署实战
在RV1126开发板上部署ONNX算法,实时目标检测+RTSP传输。视频演示地址
rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili

一、准备工作
1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本)
手动在线下载: Releases · ultralytics/yolov5 · GitHub
手动在线下载地址: https://github.com/ultralytics/yolov5/releases

往下拉找到yolov5s.pt和source code(tar.gz)并下载

在虚拟机中新建1个文件夹yolo,将上面下载的yolov5-7.0.tar.gz工程拷贝到虚拟机并解压,

得到/home/rv1126/yolo/yolov5-7.0文件夹
然后将yolov5s.pt拷贝至解压后的yolov5-7.0目录
2.YOLO初体验—ubuntu下跑YOLO预训练模型
首先进入pytorch训练环境,再进入yolo工程目录
conda activate py3.8-pytorch-1.13.0
cd /home/rv1126/yolo/yolov5-7.0/
在虚拟机中运行yolo程序
python detect.py --weights yolov5s.pt --img 640 --conf 0.25 --source data/images
上述命令表示:采用预训练模型yolov5s.pt, 喂入模型中的图片被resize为640*640大小, 置信度阈值为0.25, 源图片位于data/images下
运行结束后生成的已标记目标的图片文件放在run/detect/exp目录

二、YOLOV5模型转换为RKNN格式
1.修改models/yolo.py文件
打开/home/rv1126/yolo/yolov5-7.0/models/yolo.py找到59行,添加3个输出。注释后面的1输出。
注意python对文件格式要求较高,如果不会改或者改完报错,请拷贝/home/rv1126/yolov5/yolov5-7.0-github/models/yolo.py文件替换/home/rv1126/yolo/yolov5-7.0/models/yolo.py文件

2.将yolov5s.pt导出为yolov5s.onnx文件
注意当前环境为训练环境(py3.8-pytorch-1.13.0)
python export.py --weights yolov5s.pt --img 640 --batch 1 --include onnx
在当前路径生成yolov5s.onnx
3.将yolov5s.onnx模型转换为yolov5s.rknn
从/home/rv1126/yolov5/yolov5-7.0-github路径中拷贝模型转换脚本convert-onnx-to-rknn-pre.py和文件夹img到当前路径/home/rv1126/yolo/yolov5-7.0

进入模型转换环境
conda activate py3.6-rknn-1.7.3
开始转换模型
python convert-onnx-to-rknn-pre.py
在当前目录生成yolov5.rknn

三、部署yolov5.rknn到RV1126开发板上
1.准备工作
首先在开发板执行如下命令,退出出厂测试程序
killall rkmedia_rockx_person_detection
在开发板执行如下命令,挂载nfs根文件系统
busybox mount -t nfs -o nolock,nfsvers=3 192.168.1.108:/home/rv1126 /getnfs/
2.拷贝模型到开发板并运行程序
cd /getnfs/yolo/yolov5-7.0
cp yolov5s.rknn /demo/bin/yolov5s_relu_rv1109_rv1126_out_opt.rknn
在开发板执行如下命令 运行yolo例程
/demo/bin/openRv1126_yolov5_object_recognize
3.VLC查看视频,串口查看打印坐标
然后在电脑上打开VLC播放器,输入如下取流地址。注意IP地址请根据实际修改
rtsp://192.168.1.105/live/main_stream
即可看到实时yolo检测的视频画面。

串口实时打印检测框坐标信息

如需退出请按ctrl+c
4.源码说明
上面运行的openRv1126_yolov5_object_recognize程序源码位于路径:
/home/rv1126/openRv1126-Aidemo/openRv1126_yolov5_object_recognize_rtsp

该源码定义了模型路径、数据集路径、识别类目数量如下
/home/rv1126/openRv1126-Aidemo/openRv1126_yolov5_object_recognize_rtspopenRv1126_yolov5_object_recognize.cpp指定模型路径static char *model_path = "/demo/bin/yolov5s_relu_rv1109_rv1126_out_opt.rknn";postprocess.cc指定数据集路径 #define LABEL_NALE_TXT_PATH "/demo/bin/coco_80_labels_list.txt"postprocess.h指定模型识别类目数量#define OBJ_CLASS_NUM 80
附录:操作命令
附录
pytorch/ONNX预训练模型转换rknn onnx/torchscript->rknn思路:yolov5 v7在训练环境导出为torchscript或onnx,然后在转换环境调用对应的API来转换成RKNN模型https://github.com/ultralytics/yolov5/releases 找到v7,往下拉找到 yolov5s.pt 和 source code(tar.gz)并下载
1.下载yolov5 v7工程,并导出pt->onnx/torchscript1.1修改models/yolo.py第59行打开注释,3个输出。注释后面的1输出return x[0],x[1],x[2]1.2修改好models/yolo.py文件中的def forward(self, x)函数以后, 可执行如下命令, 将.pt文件导出.onnx 或者. torchscript格式文件:// 转换为TorchScript格式, 得到 yolov5s.torchscript文件python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include torchscript// 转换为ONNX格式, 得到 yolov5s.onnx文件python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include onnx// 若需要指定opset, 可根据安装的onnx库的版本来调整, 如安装的onnx库的版本是1.12.0, 后面加上--opset 12python export.py --weights ./yolov5s.pt --img 640 --batch 1 --include onnx --opset 122.模型转换 onnx/torchscript->rknn2.1源码解析target = 'rv1126'# 确定目标设备targetrknn = RKNN()# 创建RKNN对象rknn.config(reorder_channel='0 1 2',mean_values=[[0, 0, 0]],std_values=[[255, 255, 255]],target_platform=target,output_optimize=1)rknn.load_pytorch(model="./original_model/best.torchscript", input_size_list=[[3,640,640]])# 加载模型rknn.build(dataset='./dataset/dataset1.txt',pre_compile=True)# 构建 RKNN 模型,并预处理rknn.export_rknn('./rknn_model/yolov5-7.0-torchscript.rknn')# 导出 RKNN 模型rknn.release()# 释放RKNN对象2.2转换实操:yolov5导出,复制到/home/rv1126/ModelConvertSample/original_model best.onnx 和 best.torchscriptpython convert-onnx-to-rknn-pre.py python convert-pytorch-to-rknn-pre.py生成 /home/rv1126/ModelConvertSample/rknn_model/ yolov5-7.0-onnx.rknn 和 yolov5-7.0-torchscript.rknn
相关文章:
openRv1126 AI算法部署实战之——ONNX模型部署实战
在RV1126开发板上部署ONNX算法,实时目标检测RTSP传输。视频演示地址 rv1126 yolov5 实时目标检测 rtsp传输_哔哩哔哩_bilibili 一、准备工作 1.从官网下载YOLOv5-v7.0工程(YOLOv5的第7个版本) 手动在线下载: Releases ultraly…...
Vue 组件开发:构建高效可复用的前端界面要素
1 引言 在现代 Web 开发中,构建高效且可复用的前端界面要素是提升开发效率和用户体验的关键。Vue.js 作为一种轻量级且功能强大的前端框架,提供了丰富的工具和机制,帮助开发者快速构建高质量的应用程序。通过合理设计和封装 Vue 组件,我们可以实现组件的高效复用,提高开发…...
Vue.js组件开发-实现全屏平滑移动、自适应图片全屏滑动切换
使用Vue实现全屏平滑移动、自适应图片全屏滑动切换的功能。使用Vue 3和Vue Router,并结合一些CSS样式来完成这个效果。 步骤 创建Vue项目:使用Vue CLI创建一个新的Vue项目。准备图片:将需要展示的图片放在项目的public目录下。创建组件&…...
水果实体店品牌数字化:RWA + 智能体落地方案
一、方案背景 随着数字化技术的迅猛发展,实体零售行业正面临前所未有的挑战与机遇。传统的零售模式难以满足消费者对个性化、便捷化、智能化的需求,尤其是在水果等生鲜商品领域,如何通过技术手段提升运营效率、增强顾客体验、拓宽盈利模式&a…...
DeepSeek模型:开启人工智能的新篇章
DeepSeek模型:开启人工智能的新篇章 在当今快速发展的技术浪潮中,人工智能(AI)已经成为了推动社会进步和创新的核心力量之一。而DeepSeek模型,作为AI领域的一颗璀璨明珠,正以其强大的功能和灵活的用法&…...
Kubernetes 环境中的自动化运维实战指南
Kubernetes 作为容器编排领域的领导者,已经成为云原生应用的核心基础设施。然而,随着集群规模的扩大和应用的复杂化,手动运维 Kubernetes 集群变得愈发困难。自动化运维成为提升效率、保障系统稳定性的关键。本文将详细介绍如何在 Kubernetes 环境中实施自动化运维,涵盖工具…...
深入解析 C++17 中的 std::not_fn
文章目录 1. std::not_fn 的定义与目的2. 基本用法2.1 基本示例2.2 使用 Lambda 表达式2.3 与其他函数适配器的比较3. 在标准库中的应用3.1 结合标准库算法使用3.1.1 std::find_if 中的应用3.1.2 std::remove_if 中的应用3.1.3 其他标准库算法中的应用4. 高级技巧与最佳实践4.1…...
unity实现回旋镖函数
最近学习unity2D,想实现一个回旋镖武器,发出后就可以在角色周围回旋。 一、目标 1.不是一次性的,扔出去、返回、没有了;而是扔出去,返回到角色后方相同距离,再次返回;再次返回,永远…...
想品客老师的第九天:原型和继承
原型与继承前置看这里 原型 原型都了解了,但是不是所有对象都有对象原型 let obj1 {}console.log(obj1)let obj2 Object.create(null, {name: {value: 荷叶饭}})console.log(obj2) obj2为什么没有对象原型?obj2是完全的数据字典对象,没有…...
力扣【416. 分割等和子集】详细Java题解(背包问题)
首先我们可以求出数组和,当我们找到一个子集中元素的和为数组和的一半时,该就说明可以分割等和子集。 对于该问题我们可以转换成背包问题,求 数组里的元素 装入 数组和的一半大小的背包 能取得的最大值。 然后注意可以剪枝的地方。 代码&…...
2025年AI手机集中上市,三星Galaxy S25系列上市
2025年被认为是AI手机集中爆发的一年,各大厂商都会推出搭载人工智能的智能手机。三星Galaxy S25系列全球上市了。 三星Galaxy S25系列包含S25、S25和S25 Ultra三款机型,起售价为800美元(约合人民币5800元)。全系搭载骁龙8 Elite芯…...
为AI聊天工具添加一个知识系统 之79 详细设计之20 正则表达式 之7
本文要点 Q750、今天我们继续聊 本中的正则表达式。 在本项目(为AI聊天工具添加一个知识系统)中,将“正则表达式” 本来是计算机科学计算机科学的一个概念, 推广(扩张)到认知科学的“认知范畴”概念&#…...
理解PLT表和GOT表
1 简介 现代操作系统都是通过库来进行代码复用,降低开发成本提升系统整体效率。而库主要分为两种,一种是静态库,比如windows的.lib文件,macos的.a,linux的.a,另一种是动态库,比如windows的dll文…...
6 年没回老家过年了
今天是 2025 年的第一天,我们一家三口去了地坛庙会玩了会儿。 不是说过年的北京是空城吗?我愣是没抢到大年初一的门票,只好在咸鱼上溢价 40 买了两张票。 坐了一个小时的地坛终于到了,谁知迎来的是人山人海,同时小白牙…...
【原创改进】SCI级改进算法,一种多策略改进Alpha进化算法(IAE)
目录 1.前言2.CEC2017指标3.效果展示4.探索开发比5.定性分析6.附件材料7.代码获取 1.前言 本期推出一期原创改进——一种多策略改进Alpha进化算法(IAE)~ 选择CEC2017测试集低维(30dim)和高维(100dim)进行测…...
如何把一个python文件打包成一步一步安装的可执行程序
将一个 Python 文件打包成可执行程序(如 .exe 文件),并实现一步一步的安装过程,通常需要以下步骤: 1. 将 Python 文件打包成可执行文件 使用工具将 Python 脚本打包成可执行文件(如 .exe)。常用…...
防火墙安全策略部署
目录: 一、实验拓扑: 二、实验要求: 三、需求分析: 四、详细设计: 五、实验步骤: 1.进行vlan划分: 2.IP配置: 3.云端服务配置: 4.划分子网: 5.防火墙…...
c++ map/multimap容器 学习笔记
1 map的基本概念 简介: map中所有的元素都是pair pair中第一个元素是key(键),第二个元素是value(值) 所有元素都会根据元素的键值自动排序。本质: map/multimap 属于关联式容器,底…...
【解决方案】MuMu模拟器移植系统进度条卡住98%无法打开
之前在Vmware虚拟机里配置了mumu模拟器,现在想要移植到宿主机中 1、虚拟机中的MuMu模拟器12-1是目标系统,对应的目录如下 C:\Program Files\Netease\MuMu Player 12\vms\MuMuPlayer-12.0-1 2、Vmware-虚拟机-设置-选项,启用共享文件夹 3、复…...
日志收集Day007
1.配置ES集群TLS认证: (1)elk101节点生成证书文件 cd /usr/share/elasticsearch ./bin/elasticsearch-certutil cert -out config/elastic-certificates.p12 -pass "" --days 3650 (2)elk101节点为证书文件修改属主和属组 chown elasticsearch:elasticsearch con…...
从零实现富文本编辑器#5-编辑器选区模型的状态结构表达
先前我们总结了浏览器选区模型的交互策略,并且实现了基本的选区操作,还调研了自绘选区的实现。那么相对的,我们还需要设计编辑器的选区表达,也可以称为模型选区。编辑器中应用变更时的操作范围,就是以模型选区为基准来…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止
<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet: https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...
django filter 统计数量 按属性去重
在Django中,如果你想要根据某个属性对查询集进行去重并统计数量,你可以使用values()方法配合annotate()方法来实现。这里有两种常见的方法来完成这个需求: 方法1:使用annotate()和Count 假设你有一个模型Item,并且你想…...
什么是库存周转?如何用进销存系统提高库存周转率?
你可能听说过这样一句话: “利润不是赚出来的,是管出来的。” 尤其是在制造业、批发零售、电商这类“货堆成山”的行业,很多企业看着销售不错,账上却没钱、利润也不见了,一翻库存才发现: 一堆卖不动的旧货…...
Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具
文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...
MODBUS TCP转CANopen 技术赋能高效协同作业
在现代工业自动化领域,MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步,这两种通讯协议也正在被逐步融合,形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...
微服务商城-商品微服务
数据表 CREATE TABLE product (id bigint(20) UNSIGNED NOT NULL AUTO_INCREMENT COMMENT 商品id,cateid smallint(6) UNSIGNED NOT NULL DEFAULT 0 COMMENT 类别Id,name varchar(100) NOT NULL DEFAULT COMMENT 商品名称,subtitle varchar(200) NOT NULL DEFAULT COMMENT 商…...
12.找到字符串中所有字母异位词
🧠 题目解析 题目描述: 给定两个字符串 s 和 p,找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义: 若两个字符串包含的字符种类和出现次数完全相同,顺序无所谓,则互为…...
css3笔记 (1) 自用
outline: none 用于移除元素获得焦点时默认的轮廓线 broder:0 用于移除边框 font-size:0 用于设置字体不显示 list-style: none 消除<li> 标签默认样式 margin: xx auto 版心居中 width:100% 通栏 vertical-align 作用于行内元素 / 表格单元格ÿ…...



