详解python的单例模式
单例模式是一种设计模式,它确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。在Python中实现单例模式有多种方法,下面我将详细介绍几种常见的实现方式。
1. 使用模块
Python的模块天然就是单例的,因为模块在第一次导入时会被加载到内存中,之后的导入都是直接使用内存中的模块对象。因此,你可以通过模块来实现单例模式。
# singleton.py
class SingletonClass:def __init__(self):self.value = "Singleton Value"singleton_instance = SingletonClass()# main.py
from singleton import singleton_instanceprint(singleton_instance.value) # 输出: Singleton Value
2. 使用装饰器
你可以使用装饰器来控制类的实例化过程,确保只有一个实例被创建。
def singleton(cls):instances = {}def get_instance(*args, **kwargs):if cls not in instances:instances[cls] = cls(*args, **kwargs)return instances[cls]return get_instance@singleton
class SingletonClass:def __init__(self):self.value = "Singleton Value"instance1 = SingletonClass()
instance2 = SingletonClass()print(instance1 is instance2) # 输出: True
3. 使用类方法
你可以在类中定义一个类方法来控制实例的创建。
class SingletonClass:_instance = Nonedef __init__(self):self.value = "Singleton Value"@classmethoddef get_instance(cls):if cls._instance is None:cls._instance = cls()return cls._instanceinstance1 = SingletonClass.get_instance()
instance2 = SingletonClass.get_instance()print(instance1 is instance2) # 输出: True
4. 使用元类
元类可以控制类的创建过程,因此可以通过元类来实现单例模式。
class SingletonMeta(type):_instances = {}def __call__(cls, *args, **kwargs):if cls not in cls._instances:cls._instances[cls] = super().__call__(*args, **kwargs)return cls._instances[cls]class SingletonClass(metaclass=SingletonMeta):def __init__(self):self.value = "Singleton Value"instance1 = SingletonClass()
instance2 = SingletonClass()print(instance1 is instance2) # 输出: True
5. 使用__new__方法
你可以重写类的__new__方法来控制实例的创建。
class SingletonClass:_instance = Nonedef __new__(cls, *args, **kwargs):if cls._instance is None:cls._instance = super().__new__(cls)return cls._instancedef __init__(self):self.value = "Singleton Value"instance1 = SingletonClass()
instance2 = SingletonClass()print(instance1 is instance2) # 输出: True
总结
单例模式在Python中有多种实现方式,每种方式都有其优缺点。选择哪种方式取决于具体的应用场景和需求。通常情况下,使用模块或装饰器是最简单和最常见的方式。
相关文章:
详解python的单例模式
单例模式是一种设计模式,它确保一个类只有一个实例,并提供一个全局访问点来获取这个实例。在Python中实现单例模式有多种方法,下面我将详细介绍几种常见的实现方式。 1. 使用模块 Python的模块天然就是单例的,因为模块在第一次导…...
momask-codes 部署踩坑笔记
目录 依赖项 t2m_nlayer8_nhead6_ld384_ff1024_cdp0.1_rvq6ns 推理代码完善: 代码地址: https://github.com/EricGuo5513/momask-codes 依赖项 pip install numpy1.23 matplotlib 必须指定版本:pip install matplotlib3.3.4 t2m_nlayer…...
H3CNE-31-BFD
Bidirectional Forwarding Dection,双向转发检查 作用:毫秒级故障检查,通常结合三层协议(静态路由、vrrp、ospf、BGP等),实现链路故障快速检查。 BFD配置示例 没有中间的SW,接口downÿ…...
蓝桥备赛指南(5)
queue队列 queue是一种先进先出的数据结构。它提供了一组函数来操作和访问元素,但它的功能相对较简单,queue函数的内部实现了底层容器来存储元素,并且只能通过特定的函数来访问和操作元素。 queue函数的常用函数 1.push()函数:…...
讯飞智作 AI 配音技术浅析(一)
一、核心技术 讯飞智作 AI 配音技术作为科大讯飞在人工智能领域的重要成果,融合了多项前沿技术,为用户提供了高质量的语音合成服务。其核心技术主要涵盖以下几个方面: 1. 深度学习与神经网络 讯飞智作 AI 配音技术以深度学习为核心驱动力&…...
MySQL(高级特性篇) 14 章——MySQL事务日志
事务有4种特性:原子性、一致性、隔离性和持久性 事务的隔离性由锁机制实现事务的原子性、一致性和持久性由事务的redo日志和undo日志来保证(1)REDO LOG称为重做日志,用来保证事务的持久性(2)UNDO LOG称为回…...
openRv1126 AI算法部署实战之——TensorFlow TFLite Pytorch ONNX等模型转换实战
Conda简介 查看当前系统的环境列表 conda env list base为基础环境 py3.6-rknn-1.7.3为模型转换环境,rknn-toolkit版本V1.7.3,python版本3.6 py3.6-tensorflow-2.5.0为tensorflow模型训练环境,tensorflow版本2.5.0,python版本…...
【Redis】常见面试题
什么是Redis? Redis 和 Memcached 有什么区别? 为什么用 Redis 作为 MySQL 的缓存? 主要是因为Redis具备高性能和高并发两种特性。 高性能:MySQL中数据是从磁盘读取的,而Redis是直接操作内存,速度相当快…...
每日 Java 面试题分享【第 17 天】
欢迎来到每日 Java 面试题分享栏目! 订阅专栏,不错过每一天的练习 今日分享 3 道面试题目! 评论区复述一遍印象更深刻噢~ 目录 问题一:Java 中的访问修饰符有哪些?问题二:Java 中静态方法和实例方法的区…...
「全网最细 + 实战源码案例」设计模式——桥接模式
核心思想 桥接模式(Bridge Pattern)是一种结构型设计模式,将抽象部分与其实现部分分离,使它们可以独立变化。降低代码耦合度,避免类爆炸,提高代码的可扩展性。 结构 1. Implementation(实现类…...
JavaScript 进阶(上)
作用域 局部作用域 局部作用域分为函数作用域和块作用域。 函数作用域: 在函数内部声明的变量只能在函数内部被访问,外部无法直接访问。 总结: 函数内部声明的变量,在函数外部无法被访问 函数的参数也是函数内部的局部变量 …...
【编译原理实验二】——自动机实验:NFA转DFA并最小化
本篇适用于ZZU的编译原理课程实验二——自动机实验:NFA转DFA并最小化,包含了实验代码和实验报告的内容,读者可根据需要参考完成自己的程序设计。 如果是ZZU的学弟学妹看到这篇,那么恭喜你,你来对地方啦! 如…...
深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据
深入探讨:服务器如何响应前端请求及后端如何查看前端提交的数据 一、服务器如何响应前端请求 前端与后端的交互主要通过 HTTP 协议实现。以下是详细步骤: 1. 前端发起 HTTP 请求 GET 请求:用于从服务器获取数据。POST 请求:用…...
如何利用Docker和.NET Core实现环境一致性、简化依赖管理、快速部署与扩展,同时提高资源利用率、确保安全性和生态系统支持
目录 1. 环境一致性 2. 简化依赖管理 3. 快速部署与扩展 4. 提高资源利用率 5. 确保安全性 6. 生态系统支持 总结 使用 Docker 和 .NET Core 结合,可以有效地实现环境一致性、简化依赖管理、快速部署与扩展,同时提高资源利用率、确保安全性和生态…...
@Inject @Qualifier @Named
Inject Qualifier Named 在依赖注入(DI)中,Inject、Qualifier 和 Named 是用于管理对象创建和绑定的关键注解。以下是它们的用途、依赖配置和代码示例的详细说明: 1. 注解的作用 Inject:标记需要注入的构造函数、字段…...
创建 priority_queue - 进阶(内置类型)c++
内置类型就是 C 提供的数据类型,⽐如 int 、 double 、 long long 等。以 int 类型为例,分 别创建⼤根堆和⼩根堆。 这种写法意思是,我要告诉这个优先级队列要建一个什么样的堆,第一个int是要存什么数据类型,vecto…...
2. Java-MarkDown文件解析-工具类
2. Java-MarkDown文件解析-工具类 1. 思路 读取markdown文件的内容,根据markdown的语法进行各个类型语法的解析。引入工具类 commonmark 和 commonmark-ext-gfm-tables进行markdown语法解析。 2. 工具类 pom.xml <!-- commonmark 解析markdown --> <d…...
动态规划DP 最长上升子序列模型 登山(题目分析+C++完整代码)
概览检索 动态规划DP 最长上升子序列模型 登山 原题链接 AcWing 1014. 登山 题目描述 五一到了,ACM队组织大家去登山观光,队员们发现山上一共有N个景点,并且决定按照顺序来浏览这些景点,即每次所浏览景点的编号都要大于前一个…...
css-设置元素的溢出行为为可见overflow: visible;
1.前言 overflow 属性用于设置当元素的内容溢出其框时如何处理。 2. overflow overflow 属性的一些常见值: 1 visible:默认值。内容不会被剪裁,会溢出元素的框。 2 hidden:内容会被剪裁,不会显示溢出的部分。 3 sc…...
家居EDI:Hom Furniture EDI需求分析
HOM Furniture 是一家成立于1977年的美国家具零售商,总部位于明尼苏达州。公司致力于提供高品质、时尚的家具和家居用品,满足各种家庭和办公需求。HOM Furniture 以广泛的产品线和优质的客户服务在市场上赢得了良好的口碑。公司经营的产品包括卧室、客厅…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
【JavaEE】-- HTTP
1. HTTP是什么? HTTP(全称为"超文本传输协议")是一种应用非常广泛的应用层协议,HTTP是基于TCP协议的一种应用层协议。 应用层协议:是计算机网络协议栈中最高层的协议,它定义了运行在不同主机上…...
【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器
一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...
循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
linux arm系统烧录
1、打开瑞芯微程序 2、按住linux arm 的 recover按键 插入电源 3、当瑞芯微检测到有设备 4、松开recover按键 5、选择升级固件 6、点击固件选择本地刷机的linux arm 镜像 7、点击升级 (忘了有没有这步了 估计有) 刷机程序 和 镜像 就不提供了。要刷的时…...
涂鸦T5AI手搓语音、emoji、otto机器人从入门到实战
“🤖手搓TuyaAI语音指令 😍秒变表情包大师,让萌系Otto机器人🔥玩出智能新花样!开整!” 🤖 Otto机器人 → 直接点明主体 手搓TuyaAI语音 → 强调 自主编程/自定义 语音控制(TuyaAI…...
《基于Apache Flink的流处理》笔记
思维导图 1-3 章 4-7章 8-11 章 参考资料 源码: https://github.com/streaming-with-flink 博客 https://flink.apache.org/bloghttps://www.ververica.com/blog 聚会及会议 https://flink-forward.orghttps://www.meetup.com/topics/apache-flink https://n…...
智能仓储的未来:自动化、AI与数据分析如何重塑物流中心
当仓库学会“思考”,物流的终极形态正在诞生 想象这样的场景: 凌晨3点,某物流中心灯火通明却空无一人。AGV机器人集群根据实时订单动态规划路径;AI视觉系统在0.1秒内扫描包裹信息;数字孪生平台正模拟次日峰值流量压力…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
怎么让Comfyui导出的图像不包含工作流信息,
为了数据安全,让Comfyui导出的图像不包含工作流信息,导出的图像就不会拖到comfyui中加载出来工作流。 ComfyUI的目录下node.py 直接移除 pnginfo(推荐) 在 save_images 方法中,删除或注释掉所有与 metadata …...
