【单细胞-第三节 多样本数据分析】
文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd
GSE183904
数据原文
1.获取临床信息
筛选样本可以参考临床信息
rm(list = ls())
library(tinyarray)
a = geo_download("GSE183904")$pd
head(a)
table(a$Characteristics_ch1) #统计各样本有多少
2.批量读取
学会如何读取特定的样本
if(!file.exists("f.Rdata")){#untar("GSE183904_RAW.tar",exdir = "GSE183904_RAW")fs = dir("GSE183904_RAW/")[c(2,7)] #dir("GSE183904_RAW/"),列出所有文件#为了省点内存只做2个样本,去掉[c(2,7)]即做全部样本f = lapply(paste0("GSE183904_RAW/",fs),read.csv,row.names = 1)#row.names = 1写在lapply的括号里,但是它是read.csv的参数fs = stringr::str_split_i(fs,"_",1)names(f) = fssave(f,file = "f.Rdata")
}
load("f.Rdata")
library(Seurat)
scelist = list()
for(i in 1:length(f)){scelist[[i]] <- CreateSeuratObject(counts = f[[i]], project = names(f)[[i]])print(dim(scelist[[i]]))
}
sce.all = merge(scelist[[1]],scelist[-1])
sce.all = JoinLayers(sce.all) #连接数据head(sce.all@meta.data)
table(sce.all$orig.ident)
3.质控指标
sce.all[["percent.mt"]] <- PercentageFeatureSet(sce.all, pattern = "^MT-")
sce.all[["percent.rp"]] <- PercentageFeatureSet(sce.all, pattern = "^RP[SL]")
sce.all[["percent.hb"]] <- PercentageFeatureSet(sce.all, pattern = "^HB[^(P)]")head(sce.all@meta.data, 3)VlnPlot(sce.all, features = c("nFeature_RNA","nCount_RNA", "percent.mt","percent.rp","percent.hb"),ncol = 3,pt.size = 0, group.by = "orig.ident")
4.整合降维聚类分群
f = "obj.Rdata"
library(harmony)
if(!file.exists(f)){sce.all = sce.all %>% NormalizeData() %>% FindVariableFeatures() %>% ScaleData(features = rownames(.)) %>% RunPCA(pc.genes = VariableFeatures(.)) %>%RunHarmony("orig.ident") %>% #RunHarmony 包,整合多个样本,处理多样本的必备步骤FindNeighbors(dims = 1:15, reduction = "harmony") %>% FindClusters(resolution = 0.5) %>% RunUMAP(dims = 1:15,reduction = "harmony") %>% #reduction = "harmony"必须写上RunTSNE(dims = 1:15,reduction = "harmony")save(sce.all,file = f)
}
load(f)
ElbowPlot(sce.all)
UMAPPlot(sce.all,label = T)
TSNEPlot(sce.all,label = T)
5.手动注释
markers = read.delim("GCmarker.txt",header = F,sep = ";")
library(tidyr)
markers = separate_rows(markers,V2,sep = ",") #拆分marker
markers = split(markers$V2,markers$V1)
DotPlot(sce.all,features = markers,cols = "RdYlBu")+RotatedAxis()
ggplot2::ggsave("dotplot.png",height = 10,width = 25)
writeLines(paste0(as.character(0:13),","))
names(markers)celltype = read.csv("celltype.csv",header = F) #自己照着DotPlot图填的
celltypenew.cluster.ids <- celltype$V2
names(new.cluster.ids) <- levels(sce.all)
seu.obj <- RenameIdents(sce.all, new.cluster.ids)
save(seu.obj,file = "seu.obj.Rdata")
p1 <- DimPlot(seu.obj, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()
p1
6.自动注释
SingleR完成自主注释,不同的是scRNA = sce.all
library(celldex)
library(SingleR)
ls("package:celldex")
f = "ref_BlueprintEncode.RData"
if(!file.exists(f)){ref <- celldex::BlueprintEncodeData()save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = sce.all
test = scRNA@assays$RNA@layers$data
rownames(test) = Features(scRNA)
colnames(test) = Cells(scRNA)
pred.scRNA <- SingleR(test = test, ref = ref,labels = ref$label.main, clusters = scRNA@active.ident)
pred.scRNA$pruned.labels
#查看注释准确性
plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
levels(scRNA)
scRNA <- RenameIdents(scRNA,new.cluster.ids)
levels(scRNA)
p2 <- DimPlot(scRNA, reduction = "tsne",label = T,pt.size = 0.5) + NoLegend()
p1+p2
7.marker基因
找不同细胞类型间的差异基因
f = "markers.Rdata"
if(!file.exists(f)){allmarkers <- FindAllMarkers(seu.obj, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)save(allmarkers,file = f)
}
load(f)
head(allmarkers)
如果想自行修改orig.ident:使用下边的代码:
sce.all@meta.data$orig.ident=rep(c("a","b"),times= c(ncol(scelist[[1]]),
ncol(scelistl[[2]])))
相关文章:
【单细胞-第三节 多样本数据分析】
文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd GSE183904 数据原文 1.获取临床信息 筛选样本可以参考临床信息 rm(list ls()) library(tinyarray) a geo_download("GSE183904")$pd head(a) table(a$Characteristics_ch1) #统计各样本有多少2.批量读取 学…...
(java) IO流
学习IO流之前,我们需要先认识file对象,帮助我们更好的使用IO流 1.1 file 作用:关联硬盘上的文件 写法: File(String path); (推荐)File(String parent, String child); //由父级路径,再子级路径拼接而成File(File p…...
2025年1月个人工作生活总结
本文为 2025年1月工作生活总结。 研发编码 使用sqlite3命令行查询表数据 可以直接使用sqlite3查询数据表,不需进入命令行模式。示例如下: sqlite3 database_name.db "SELECT * FROM table_name;"linux shell使用read超时一例 先前有个编译…...
线性调整器——耗能型调整器
线性调整器又称线性电压调节器,以下是关于它的介绍: 基本工作原理 线性调整器的基本电路如图1.1(a)所示,晶体管Q1(工作于线性状态,或非开关状态)构成一个连接直流源V和输出端V。的可调电气电阻,直流源V由60Hz隔离变压器(电气隔离和整流&#…...
【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析
你是否在寻找数学建模比赛的突破点?数学建模进阶思路! 作为经验丰富的美赛O奖、国赛国一的数学建模团队,我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现,还有详尽的建模过程和解析,…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.28 存储之道:跨平台数据持久化方案
好的,我将按照您的要求生成一篇高质量的Python NumPy文章。以下是第28篇《存储之道:跨平台数据持久化方案》的完整内容,包括目录、正文和参考文献。 1.28 存储之道:跨平台数据持久化方案 目录 #mermaid-svg-n1z37AP8obEgptkD {f…...
拼车(1094)
1094. 拼车 - 力扣(LeetCode) 解法: class Solution { public:bool carPooling(vector<vector<int>>& trips, int capacity) {uint32_t passenger_cnt 0;//将原数据按照from排序auto func_0 [](vector<int> & …...
基于Python的人工智能患者风险评估预测模型构建与应用研究(下)
3.3 模型选择与训练 3.3.1 常见预测模型介绍 在构建患者风险评估模型时,选择合适的预测模型至关重要。不同的模型具有各自的优缺点和适用场景,需要根据医疗数据的特点、风险评估的目标以及计算资源等因素进行综合考虑。以下详细介绍几种常见的预测模型。 逻辑回归(Logisti…...
< OS 有关 > Android 手机 SSH 客户端 app: connectBot
connectBot 开源且功能齐全的SSH客户端,界面简洁,支持证书密钥。 下载量超 500万 方便在 Android 手机上,连接 SSH 服务器,去运行命令。 Fail2ban 12小时内抓获的 IP ~ ~ ~ ~ rootjpn:~# sudo fail2ban-client status sshd Status for the jail: sshd …...
向量和矩阵算法笔记
向量和矩阵算法笔记 Ps:因为本人实力有限,有一部分可能不太详细,若有补充评论区回复,QWQ 向量 向量的定义 首先,因为我刚刚学到高中的向量,对向量的看法呢就是一条有长度和方向的线,不过这在数学上的定义其实是不对,甚至跟我看的差别其实有点大,真正的定义就是数域…...
uniapp使用uni.navigateBack返回页面时携带参数到上个页面
我们平时开发中也经常遇到这种场景,跳转一个页面会进行一些操作,操作完成后再返回上个页面同时要携带着一些参数 其实也很简单,也来记录一下吧 假设从A页面 跳转到 B页面 A页面 直接上完整代码了哈,很简单: <t…...
Python 梯度下降法(二):RMSProp Optimize
文章目录 Python 梯度下降法(二):RMSProp Optimize一、数学原理1.1 介绍1.2 公式 二、代码实现2.1 函数代码2.2 总代码 三、代码优化3.1 存在问题3.2 收敛判断3.3 函数代码3.4 总代码 四、优缺点4.1 优点4.2 缺点 Python 梯度下降法ÿ…...
Android Studio 正式版 10 周年回顾,承载 Androider 的峥嵘十年
Android Studio 1.0 宣发于 2014 年 12 月,而现在时间来到 2025 ,不知不觉间 Android Studio 已经陪伴 Androider 走过十年历程。 Android Studio 10 周年,也代表着了我的职业生涯也超十年,现在回想起来依然觉得「唏嘘」ÿ…...
sem_wait的概念和使用案列
sem_wait 是 POSIX 标准中定义的一个用于同步的函数,它通常用于操作信号量(semaphore)。信号量是一个整数变量,可以用来控制对共享资源的访问。在多线程编程中,sem_wait 常用于实现线程间的同步。 概念 sem_wait 的基…...
集合的奇妙世界:Python集合的经典、避坑与实战
集合的奇妙世界:Python集合的经典、避坑与实战 内容简介 本系列文章是为 Python3 学习者精心设计的一套全面、实用的学习指南,旨在帮助读者从基础入门到项目实战,全面提升编程能力。文章结构由 5 个版块组成,内容层层递进&#x…...
专业视角深度解析:DeepSeek的核心优势何在?
杭州深度求索(DeepSeek)人工智能基础技术研究有限公司,是一家成立于2023年7月的中国人工智能初创企业,总部位于浙江省杭州市。该公司由量化对冲基金幻方量化(High-Flyer)的联合创始人梁文锋创立,…...
MySQL 索引存储结构
索引是优化数据库查询最重要的方式之一,它是在 MySQL 的存储引擎层中实现的,所以 每一种存储引擎对应的索引不一定相同。我们可以通过下面这张表格,看看不同的存储引擎 分别支持哪种索引类型: BTree 索引和 Hash 索引是我们比较…...
【ComfyUI专栏】如何使用Git命令行安装非Manager收录节点
当前的ComfyUI的收录的自定义节点很多,但是有些节点属于新出来,或者他的应用没有那么广泛,Manager管理节点 有可能没有收录到,这时候 如果我们需要安装需要怎么办呢?这就涉及到我们自己安装这些节点了。例如下面的内容…...
python算法和数据结构刷题[1]:数组、矩阵、字符串
一画图二伪代码三写代码 LeetCode必刷100题:一份来自面试官的算法地图(题解持续更新中)-CSDN博客 算法通关手册(LeetCode) | 算法通关手册(LeetCode) (itcharge.cn) 面试经典 150 题 - 学习计…...
数据分析系列--④RapidMiner进行关联分析(案例)
一、核心概念 1.项集(Itemset) 2.规则(Rule) 3.支持度(Support) 3.1 支持度的定义 3.2 支持度的意义 3.3 支持度的应用 3.4 支持度的示例 3.5 支持度的调整 3.6 支持度与其他指标的关系 4.置信度࿰…...
2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
OkHttp 中实现断点续传 demo
在 OkHttp 中实现断点续传主要通过以下步骤完成,核心是利用 HTTP 协议的 Range 请求头指定下载范围: 实现原理 Range 请求头:向服务器请求文件的特定字节范围(如 Range: bytes1024-) 本地文件记录:保存已…...
Android15默认授权浮窗权限
我们经常有那种需求,客户需要定制的apk集成在ROM中,并且默认授予其【显示在其他应用的上层】权限,也就是我们常说的浮窗权限,那么我们就可以通过以下方法在wms、ams等系统服务的systemReady()方法中调用即可实现预置应用默认授权浮…...
稳定币的深度剖析与展望
一、引言 在当今数字化浪潮席卷全球的时代,加密货币作为一种新兴的金融现象,正以前所未有的速度改变着我们对传统货币和金融体系的认知。然而,加密货币市场的高度波动性却成为了其广泛应用和普及的一大障碍。在这样的背景下,稳定…...
Yolov8 目标检测蒸馏学习记录
yolov8系列模型蒸馏基本流程,代码下载:这里本人提交了一个demo:djdll/Yolov8_Distillation: Yolov8轻量化_蒸馏代码实现 在轻量化模型设计中,**知识蒸馏(Knowledge Distillation)**被广泛应用,作为提升模型…...
GruntJS-前端自动化任务运行器从入门到实战
Grunt 完全指南:从入门到实战 一、Grunt 是什么? Grunt是一个基于 Node.js 的前端自动化任务运行器,主要用于自动化执行项目开发中重复性高的任务,例如文件压缩、代码编译、语法检查、单元测试、文件合并等。通过配置简洁的任务…...
深度学习水论文:mamba+图像增强
🧀当前视觉领域对高效长序列建模需求激增,对Mamba图像增强这方向的研究自然也逐渐火热。原因在于其高效长程建模,以及动态计算优势,在图像质量提升和细节恢复方面有难以替代的作用。 🧀因此短时间内,就有不…...
腾讯云V3签名
想要接入腾讯云的Api,必然先按其文档计算出所要求的签名。 之前也调用过腾讯云的接口,但总是卡在签名这一步,最后放弃选择SDK,这次终于自己代码实现。 可能腾讯云翻新了接口文档,现在阅读起来,清晰了很多&…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
spring Security对RBAC及其ABAC的支持使用
RBAC (基于角色的访问控制) RBAC (Role-Based Access Control) 是 Spring Security 中最常用的权限模型,它将权限分配给角色,再将角色分配给用户。 RBAC 核心实现 1. 数据库设计 users roles permissions ------- ------…...
