当前位置: 首页 > news >正文

【单细胞-第三节 多样本数据分析】

文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd
GSE183904
数据原文

1.获取临床信息

筛选样本可以参考临床信息

rm(list = ls())
library(tinyarray)
a = geo_download("GSE183904")$pd
head(a)
table(a$Characteristics_ch1) #统计各样本有多少

2.批量读取

学会如何读取特定的样本

if(!file.exists("f.Rdata")){#untar("GSE183904_RAW.tar",exdir = "GSE183904_RAW")fs = dir("GSE183904_RAW/")[c(2,7)] #dir("GSE183904_RAW/"),列出所有文件#为了省点内存只做2个样本,去掉[c(2,7)]即做全部样本f = lapply(paste0("GSE183904_RAW/",fs),read.csv,row.names = 1)#row.names = 1写在lapply的括号里,但是它是read.csv的参数fs = stringr::str_split_i(fs,"_",1)names(f) = fssave(f,file = "f.Rdata")
}
load("f.Rdata")
library(Seurat)
scelist = list()
for(i in 1:length(f)){scelist[[i]] <- CreateSeuratObject(counts = f[[i]], project = names(f)[[i]])print(dim(scelist[[i]]))
}
sce.all = merge(scelist[[1]],scelist[-1])
sce.all = JoinLayers(sce.all)  #连接数据head(sce.all@meta.data)
table(sce.all$orig.ident)

3.质控指标

sce.all[["percent.mt"]] <- PercentageFeatureSet(sce.all, pattern = "^MT-")
sce.all[["percent.rp"]] <- PercentageFeatureSet(sce.all, pattern = "^RP[SL]")
sce.all[["percent.hb"]] <- PercentageFeatureSet(sce.all, pattern = "^HB[^(P)]")head(sce.all@meta.data, 3)VlnPlot(sce.all, features = c("nFeature_RNA","nCount_RNA", "percent.mt","percent.rp","percent.hb"),ncol = 3,pt.size = 0, group.by = "orig.ident")

4.整合降维聚类分群

f = "obj.Rdata"
library(harmony)
if(!file.exists(f)){sce.all = sce.all %>% NormalizeData() %>%  FindVariableFeatures() %>%  ScaleData(features = rownames(.)) %>%  RunPCA(pc.genes = VariableFeatures(.))  %>%RunHarmony("orig.ident") %>% #RunHarmony 包,整合多个样本,处理多样本的必备步骤FindNeighbors(dims = 1:15, reduction = "harmony") %>% FindClusters(resolution = 0.5) %>% RunUMAP(dims = 1:15,reduction = "harmony") %>% #reduction = "harmony"必须写上RunTSNE(dims = 1:15,reduction = "harmony")save(sce.all,file = f)
}
load(f)
ElbowPlot(sce.all)
UMAPPlot(sce.all,label = T)
TSNEPlot(sce.all,label = T)

5.手动注释

markers = read.delim("GCmarker.txt",header = F,sep = ";")
library(tidyr)
markers = separate_rows(markers,V2,sep = ",") #拆分marker
markers = split(markers$V2,markers$V1)
DotPlot(sce.all,features = markers,cols = "RdYlBu")+RotatedAxis()
ggplot2::ggsave("dotplot.png",height = 10,width = 25)
writeLines(paste0(as.character(0:13),","))
names(markers)celltype = read.csv("celltype.csv",header = F) #自己照着DotPlot图填的
celltypenew.cluster.ids <- celltype$V2
names(new.cluster.ids) <- levels(sce.all)
seu.obj <- RenameIdents(sce.all, new.cluster.ids)
save(seu.obj,file = "seu.obj.Rdata")
p1 <- DimPlot(seu.obj, reduction = "tsne", label = TRUE, pt.size = 0.5) + NoLegend()
p1

6.自动注释

SingleR完成自主注释,不同的是scRNA = sce.all

library(celldex)
library(SingleR)
ls("package:celldex")
f = "ref_BlueprintEncode.RData"
if(!file.exists(f)){ref <- celldex::BlueprintEncodeData()save(ref,file = f)
}
ref <- get(load(f))
library(BiocParallel)
scRNA = sce.all
test = scRNA@assays$RNA@layers$data
rownames(test) = Features(scRNA)
colnames(test) = Cells(scRNA)
pred.scRNA <- SingleR(test = test, ref = ref,labels = ref$label.main, clusters = scRNA@active.ident)
pred.scRNA$pruned.labels
#查看注释准确性 
plotScoreHeatmap(pred.scRNA, clusters=pred.scRNA@rownames, fontsize.row = 9,show_colnames = T)
new.cluster.ids <- pred.scRNA$pruned.labels
names(new.cluster.ids) <- levels(scRNA)
levels(scRNA)
scRNA <- RenameIdents(scRNA,new.cluster.ids)
levels(scRNA)
p2 <- DimPlot(scRNA, reduction = "tsne",label = T,pt.size = 0.5) + NoLegend()
p1+p2

7.marker基因

找不同细胞类型间的差异基因

f = "markers.Rdata"
if(!file.exists(f)){allmarkers <- FindAllMarkers(seu.obj, only.pos = TRUE, min.pct = 0.25, logfc.threshold = 0.25)save(allmarkers,file = f)
}
load(f)
head(allmarkers)

如果想自行修改orig.ident:使用下边的代码:

sce.all@meta.data$orig.ident=rep(c("a","b"),times= c(ncol(scelist[[1]]),
ncol(scelistl[[2]])))

相关文章:

【单细胞-第三节 多样本数据分析】

文件在单细胞\5_GC_py\1_single_cell\1.GSE183904.Rmd GSE183904 数据原文 1.获取临床信息 筛选样本可以参考临床信息 rm(list ls()) library(tinyarray) a geo_download("GSE183904")$pd head(a) table(a$Characteristics_ch1) #统计各样本有多少2.批量读取 学…...

(java) IO流

学习IO流之前&#xff0c;我们需要先认识file对象&#xff0c;帮助我们更好的使用IO流 1.1 file 作用&#xff1a;关联硬盘上的文件 写法&#xff1a; File(String path); (推荐)File(String parent, String child); //由父级路径&#xff0c;再子级路径拼接而成File(File p…...

2025年1月个人工作生活总结

本文为 2025年1月工作生活总结。 研发编码 使用sqlite3命令行查询表数据 可以直接使用sqlite3查询数据表&#xff0c;不需进入命令行模式。示例如下&#xff1a; sqlite3 database_name.db "SELECT * FROM table_name;"linux shell使用read超时一例 先前有个编译…...

线性调整器——耗能型调整器

线性调整器又称线性电压调节器&#xff0c;以下是关于它的介绍&#xff1a; 基本工作原理 线性调整器的基本电路如图1.1(a)所示,晶体管Q1(工作于线性状态,或非开关状态)构成一个连接直流源V和输出端V。的可调电气电阻,直流源V由60Hz隔离变压器&#xff08;电气隔离和整流&#…...

【2025美赛D题】为更美好的城市绘制路线图建模|建模过程+完整代码论文全解全析

你是否在寻找数学建模比赛的突破点&#xff1f;数学建模进阶思路&#xff01; 作为经验丰富的美赛O奖、国赛国一的数学建模团队&#xff0c;我们将为你带来本次数学建模竞赛的全面解析。这个解决方案包不仅包括完整的代码实现&#xff0c;还有详尽的建模过程和解析&#xff0c…...

【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】1.28 存储之道:跨平台数据持久化方案

好的&#xff0c;我将按照您的要求生成一篇高质量的Python NumPy文章。以下是第28篇《存储之道&#xff1a;跨平台数据持久化方案》的完整内容&#xff0c;包括目录、正文和参考文献。 1.28 存储之道&#xff1a;跨平台数据持久化方案 目录 #mermaid-svg-n1z37AP8obEgptkD {f…...

拼车(1094)

1094. 拼车 - 力扣&#xff08;LeetCode&#xff09; 解法&#xff1a; class Solution { public:bool carPooling(vector<vector<int>>& trips, int capacity) {uint32_t passenger_cnt 0;//将原数据按照from排序auto func_0 [](vector<int> & …...

基于Python的人工智能患者风险评估预测模型构建与应用研究(下)

3.3 模型选择与训练 3.3.1 常见预测模型介绍 在构建患者风险评估模型时,选择合适的预测模型至关重要。不同的模型具有各自的优缺点和适用场景,需要根据医疗数据的特点、风险评估的目标以及计算资源等因素进行综合考虑。以下详细介绍几种常见的预测模型。 逻辑回归(Logisti…...

< OS 有关 > Android 手机 SSH 客户端 app: connectBot

connectBot 开源且功能齐全的SSH客户端,界面简洁,支持证书密钥。 下载量超 500万 方便在 Android 手机上&#xff0c;连接 SSH 服务器&#xff0c;去运行命令。 Fail2ban 12小时内抓获的 IP ~ ~ ~ ~ rootjpn:~# sudo fail2ban-client status sshd Status for the jail: sshd …...

向量和矩阵算法笔记

向量和矩阵算法笔记 Ps:因为本人实力有限,有一部分可能不太详细,若有补充评论区回复,QWQ 向量 向量的定义 首先,因为我刚刚学到高中的向量,对向量的看法呢就是一条有长度和方向的线,不过这在数学上的定义其实是不对,甚至跟我看的差别其实有点大,真正的定义就是数域…...

uniapp使用uni.navigateBack返回页面时携带参数到上个页面

我们平时开发中也经常遇到这种场景&#xff0c;跳转一个页面会进行一些操作&#xff0c;操作完成后再返回上个页面同时要携带着一些参数 其实也很简单&#xff0c;也来记录一下吧 假设从A页面 跳转到 B页面 A页面 直接上完整代码了哈&#xff0c;很简单&#xff1a; <t…...

Python 梯度下降法(二):RMSProp Optimize

文章目录 Python 梯度下降法&#xff08;二&#xff09;&#xff1a;RMSProp Optimize一、数学原理1.1 介绍1.2 公式 二、代码实现2.1 函数代码2.2 总代码 三、代码优化3.1 存在问题3.2 收敛判断3.3 函数代码3.4 总代码 四、优缺点4.1 优点4.2 缺点 Python 梯度下降法&#xff…...

Android Studio 正式版 10 周年回顾,承载 Androider 的峥嵘十年

Android Studio 1.0 宣发于 2014 年 12 月&#xff0c;而现在时间来到 2025 &#xff0c;不知不觉间 Android Studio 已经陪伴 Androider 走过十年历程。 Android Studio 10 周年&#xff0c;也代表着了我的职业生涯也超十年&#xff0c;现在回想起来依然觉得「唏嘘」&#xff…...

sem_wait的概念和使用案列

sem_wait 是 POSIX 标准中定义的一个用于同步的函数&#xff0c;它通常用于操作信号量&#xff08;semaphore&#xff09;。信号量是一个整数变量&#xff0c;可以用来控制对共享资源的访问。在多线程编程中&#xff0c;sem_wait 常用于实现线程间的同步。 概念 sem_wait 的基…...

集合的奇妙世界:Python集合的经典、避坑与实战

集合的奇妙世界&#xff1a;Python集合的经典、避坑与实战 内容简介 本系列文章是为 Python3 学习者精心设计的一套全面、实用的学习指南&#xff0c;旨在帮助读者从基础入门到项目实战&#xff0c;全面提升编程能力。文章结构由 5 个版块组成&#xff0c;内容层层递进&#x…...

专业视角深度解析:DeepSeek的核心优势何在?

杭州深度求索&#xff08;DeepSeek&#xff09;人工智能基础技术研究有限公司&#xff0c;是一家成立于2023年7月的中国人工智能初创企业&#xff0c;总部位于浙江省杭州市。该公司由量化对冲基金幻方量化&#xff08;High-Flyer&#xff09;的联合创始人梁文锋创立&#xff0c…...

MySQL 索引存储结构

索引是优化数据库查询最重要的方式之一&#xff0c;它是在 MySQL 的存储引擎层中实现的&#xff0c;所以 每一种存储引擎对应的索引不一定相同。我们可以通过下面这张表格&#xff0c;看看不同的存储引擎 分别支持哪种索引类型&#xff1a; BTree 索引和 Hash 索引是我们比较…...

【ComfyUI专栏】如何使用Git命令行安装非Manager收录节点

当前的ComfyUI的收录的自定义节点很多&#xff0c;但是有些节点属于新出来&#xff0c;或者他的应用没有那么广泛&#xff0c;Manager管理节点 有可能没有收录到&#xff0c;这时候 如果我们需要安装需要怎么办呢&#xff1f;这就涉及到我们自己安装这些节点了。例如下面的内容…...

python算法和数据结构刷题[1]:数组、矩阵、字符串

一画图二伪代码三写代码 LeetCode必刷100题&#xff1a;一份来自面试官的算法地图&#xff08;题解持续更新中&#xff09;-CSDN博客 算法通关手册&#xff08;LeetCode&#xff09; | 算法通关手册&#xff08;LeetCode&#xff09; (itcharge.cn) 面试经典 150 题 - 学习计…...

数据分析系列--④RapidMiner进行关联分析(案例)

一、核心概念 1.项集&#xff08;Itemset&#xff09; 2.规则&#xff08;Rule&#xff09; 3.支持度&#xff08;Support&#xff09; 3.1 支持度的定义 3.2 支持度的意义 3.3 支持度的应用 3.4 支持度的示例 3.5 支持度的调整 3.6 支持度与其他指标的关系 4.置信度&#xff0…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

JavaScript 中的 ES|QL:利用 Apache Arrow 工具

作者&#xff1a;来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗&#xff1f;了解下一期 Elasticsearch Engineer 培训的时间吧&#xff01; Elasticsearch 拥有众多新功能&#xff0c;助你为自己…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

图表类系列各种样式PPT模版分享

图标图表系列PPT模版&#xff0c;柱状图PPT模版&#xff0c;线状图PPT模版&#xff0c;折线图PPT模版&#xff0c;饼状图PPT模版&#xff0c;雷达图PPT模版&#xff0c;树状图PPT模版 图表类系列各种样式PPT模版分享&#xff1a;图表系列PPT模板https://pan.quark.cn/s/20d40aa…...

什么是Ansible Jinja2

理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具&#xff0c;可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板&#xff0c;允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板&#xff0c;并通…...

Unity | AmplifyShaderEditor插件基础(第七集:平面波动shader)

目录 一、&#x1f44b;&#x1f3fb;前言 二、&#x1f608;sinx波动的基本原理 三、&#x1f608;波动起来 1.sinx节点介绍 2.vertexPosition 3.集成Vector3 a.节点Append b.连起来 4.波动起来 a.波动的原理 b.时间节点 c.sinx的处理 四、&#x1f30a;波动优化…...

站群服务器的应用场景都有哪些?

站群服务器主要是为了多个网站的托管和管理所设计的&#xff0c;可以通过集中管理和高效资源的分配&#xff0c;来支持多个独立的网站同时运行&#xff0c;让每一个网站都可以分配到独立的IP地址&#xff0c;避免出现IP关联的风险&#xff0c;用户还可以通过控制面板进行管理功…...

Web后端基础(基础知识)

BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程序的逻辑和数据都存储在服务端。 优点&#xff1a;维护方便缺点&#xff1a;体验一般 CS架构&#xff1a;Client/Server&#xff0c;客户端/服务器架构模式。需要单独…...

多元隐函数 偏导公式

我们来推导隐函数 z z ( x , y ) z z(x, y) zz(x,y) 的偏导公式&#xff0c;给定一个隐函数关系&#xff1a; F ( x , y , z ( x , y ) ) 0 F(x, y, z(x, y)) 0 F(x,y,z(x,y))0 &#x1f9e0; 目标&#xff1a; 求 ∂ z ∂ x \frac{\partial z}{\partial x} ∂x∂z​、 …...

Python爬虫实战:研究Restkit库相关技术

1. 引言 1.1 研究背景与意义 在当今信息爆炸的时代,互联网上存在着海量的有价值数据。如何高效地采集这些数据并将其应用于实际业务中,成为了许多企业和开发者关注的焦点。网络爬虫技术作为一种自动化的数据采集工具,可以帮助我们从网页中提取所需的信息。而 RESTful API …...