vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscode+cuda11.6+vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和cl编译器离的远远的。
安装WSL+vscode工作链
首先是已经安装好了wsl2,wsl是windows下的Linux子系统,特别好用相当于集齐了linux的开源架构特点和win中的图形化界面(我安装wsl2后,下载的是ubuntu 22.04LTS版本)。直接可以在命令行启动,或者也可以在vscode中安装一个插件。
wsl安装命令如下(来自deepseek,不保证完全可行)
wsl --install
wsl --list --online
wsl --install -d Ubuntu

正是该传奇插件,安装好后,就可以通过remote SSH直连WSL2,相当于借鸡生蛋,只是借用了个windows中的vscode的图形化界面,操作的还是Linux中的东西。

这里可以看到打开的终端对应的是linux中的bash shell。
安装cuda11.7
然后就是安装cuda11.7(之所以选择cuda11.7是因为cuda11.7比较完善,而且GPU Invida3060以上就能支持),大概的安装命令就是问deepseek就行了,deepseek给出的安装办法如下:
wget https://developer.download.nvidia.com/compute/cuda/repos/wsl-ubuntu/x86_64/cuda-wsl-ubuntu.pin
sudo mv cuda-wsl-ubuntu.pin /etc/apt/preferences.d/cuda-repository-pin-600
wget https://developer.download.nvidia.com/compute/cuda/11.7.0/local_installers/cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo dpkg -i cuda-repo-wsl-ubuntu-11-7-local_11.7.0-1_amd64.deb
sudo cp /var/cuda-repo-wsl-ubuntu-11-7-local/cuda-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cuda
安装好后还需要配置环境变量,要配置bin和lib64的,这里我的配置方法如下:
首先:
vim ~/.bashrc
其次:
export PATH=/usr/local/cuda-11/bin${PATH:+:${PATH}}
export LD_LIBRARY_PATH=/usr/local/cuda-11/lib64${LD_LIBRARY_PATH:+:${LD_LIBRARY_PATH}}
保存并退出后:
source ~/.bashrc
随后检验一下用如下命令:
nvcc --version
搭建cuda c编程环境并检验
要建设cuda c编程环境还要再安装个gcc编译器包(不确定,不安可能也行),安装好后,在工作目录新建一个test.cu。
#include <stdio.h>
#include <cuda_runtime.h>// CUDA 核函数,用于向量加法
__global__ void vectorAdd(const float *A, const float *B, float *C, int numElements) {int i = blockDim.x * blockIdx.x + threadIdx.x;if (i < numElements) {C[i] = A[i] + B[i];}
}int main() {// 定义向量大小int numElements = 50000;size_t size = numElements * sizeof(float);// 分配主机内存float *h_A = (float *)malloc(size);float *h_B = (float *)malloc(size);float *h_C = (float *)malloc(size);// 初始化主机数据for (int i = 0; i < numElements; ++i) {h_A[i] = rand() / (float)RAND_MAX;h_B[i] = rand() / (float)RAND_MAX;}// 分配设备内存float *d_A, *d_B, *d_C;cudaMalloc((void **)&d_A, size);cudaMalloc((void **)&d_B, size);cudaMalloc((void **)&d_C, size);// 将数据从主机复制到设备cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);// 定义线程块和网格大小int threadsPerBlock = 256;int blocksPerGrid = (numElements + threadsPerBlock - 1) / threadsPerBlock;// 启动 CUDA 核函数vectorAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, numElements);// 将结果从设备复制回主机cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);// 验证结果for (int i = 0; i < numElements; ++i) {if (fabs(h_A[i] + h_B[i] - h_C[i]) > 1e-5) {fprintf(stderr, "Result verification failed at element %d!\n", i);exit(EXIT_FAILURE);}}printf("Test PASSED\n");// 释放设备内存cudaFree(d_A);cudaFree(d_B);cudaFree(d_C);// 释放主机内存free(h_A);free(h_B);free(h_C);return 0;
}
然后在终端中输入如下命令
nvcc -o test test.cu
./test
结果如下,上面的命令是先编译.cu文件然后再运行编译后的生成。

搭建pytorch深度学习开发环境
这里就稍微麻烦一些了,首先要确保安装了anaconda,conda是专门的为Python虚拟环境的搭建而服务的,安装命令如下:
wget https://repo.anaconda.com/miniconda/Miniconda3-py38_4.9.2-Linux-x86_64.sh
bash Miniconda3-py38_4.9.2-Linux-x86_64.sh
conda init
随后新建python3.8的虚拟环境并启动
conda create --name myenv python=3.8
conda activate myenv
确保是在虚拟环境中去安装pytorch,这里安装的是pytorch2.0.1,具体安装的时候我犯了好几次错误,实际上问ai让ai来换源是不可行的,ai换的源总是有问题,但是不换源又下的太慢,这里的解决办法是用梯子魔法+pip来安装(实测发现pip安装比conda安装要快一些),具体安装命令如下:
Previous PyTorch Versions | PyTorch是在这个安装历史版本中找的命令。
pip install torch==2.0.1 torchvision==0.15.2 torchaudio==2.0.2
安装完成后的验证代码如下:
import torchprint(torch.__version__)
print(torch.cuda.is_available())
安装cudnn
cudnn是英伟达专门开发的cuda neural network库,安装命令如下:
wget https://developer.download.nvidia.com/compute/cudnn/9.7.0/local_installers/cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo dpkg -i cudnn-local-repo-ubuntu2204-9.7.0_1.0-1_amd64.deb
sudo cp /var/cudnn-local-repo-ubuntu2204-9.7.0/cudnn-*-keyring.gpg /usr/share/keyrings/
sudo apt-get update
sudo apt-get -y install cudnn
cuDNN 9.7.0 Downloads | NVIDIA Developer
但是有个问题我是不太清楚,我安装的是cudnn的9.7.0但是跑下面的验证代码的时候却告诉我cudnn是8.5.00
import torch# 检查 PyTorch 版本
print(torch.__version__)# 检查 CUDA 是否可用
print(torch.cuda.is_available())# 检查 cuDNN 版本
print(torch.backends.cudnn.version())# 检查当前 GPU 设备
print(torch.cuda.current_device())# 检查 GPU 名称
print(torch.cuda.get_device_name(0))

总结
环境配置是电信技术中的集大成者,我本人也不是很懂,经常失败是很正常的。但是千万记得,不要直接去下载国外网站大文件,否则下载失败再重来会是很痛苦的。
相关文章:
vscode+WSL2(ubuntu22.04)+pytorch+conda+cuda+cudnn安装系列
最近在家过年闲的没事,于是研究起深度学习开发工具链的配置和安装,之前欲与天公试比高,尝试在win上用vscodecuda11.6vs2019的cl编译器搭建cuda c编程环境,最后惨败,沦为笑柄,痛定思痛,这次直接和…...
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)
手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码) 目录 手撕Diffusion系列 - 第十一期 - lora微调 - 基于Stable Diffusion(代码)Stable Diffusion 原理图Stable Diffusion的原理解释Stable Diffusion 和Di…...
【Block总结】OutlookAttention注意力,捕捉细节和局部特征|即插即用
论文信息 标题: VOLO: Vision Outlooker for Visual Recognition作者: Li Yuan, Qibin Hou, Zihang Jiang, Jiashi Feng, Shuicheng Yan代码链接: https://github.com/sail-sg/volo论文链接: https://arxiv.org/pdf/2106.13112 创新点 前景注意力机制: VOLO引入了一种称为“…...
网络攻防实战指北专栏讲解大纲与网络安全法
专栏 本专栏为网络攻防实战指北,大纲如下所示 进度:目前已更完准备篇、HTML基础 计划:所谓基础不牢,地动山摇。所以下一步将持续更新基础篇内容 讲解信息安全时,结合《中华人民共和国网络安全法》(以下简…...
【已解决】windows7虚拟机安装VMtools频繁报错
为了在虚拟机VMware中安装win7,题主先在网上下载了windows7 professional版本的镜像,在vmware中安装vmtools时报错,信息如下 (安装程序无法继续,本程序需要您将此虚拟机上安装的操作系统更新到SP1) 然后就…...
蓝桥杯模拟算法:多项式输出
P1067 [NOIP2009 普及组] 多项式输出 - 洛谷 | 计算机科学教育新生态 这道题是一道模拟题,我们需要分情况讨论,我们需要做一下分类讨论 #include <iostream> #include <cstdlib> using namespace std;int main() {int n;cin >> n;for…...
冲刺蓝桥杯之速通vector!!!!!
文章目录 知识点创建增删查改 习题1习题2习题3习题4:习题5: 知识点 C的STL提供已经封装好的容器vector,也可叫做可变长的数组,vector底层就是自动扩容的顺序表,其中的增删查改已经封装好 创建 const int N30; vecto…...
知识管理平台在数字经济时代推动企业智慧决策与知识赋能的路径分析
内容概要 在数字经济时代,知识管理平台被视为企业智慧决策与知识赋能的关键工具。其核心作用在于通过高效地整合、存储和分发企业内部的知识资源,促进信息的透明化与便捷化,使得决策者能够在瞬息万变的市场环境中迅速获取所需信息。这不仅提…...
IT服务管理平台(ITSM):构建高效运维体系的基石
IT服务管理平台(ITSM):构建高效运维体系的基石 在数字化转型浪潮的推动下,企业对IT服务的依赖日益加深,如何高效管理和优化IT服务成为企业面临的重要课题。IT服务管理平台(ITSM)应运而生,以其系统化的管理方法和工具,助力企业实现IT服务的规范化、高效化和智能化。本…...
[EAI-026] DeepSeek-VL2 技术报告解读
Paper Card 论文标题:DeepSeek-VL2: Mixture-of-Experts Vision-Language Models for Advanced Multimodal Understanding 论文作者:Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao, Yiyang Ma, Chengyue Wu, Bin…...
深度学习:基于MindNLP的RAG应用开发
什么是RAG? RAG(Retrieval-Augmented Generation,检索增强生成) 是一种结合检索(Retrieval)和生成(Generation)的技术,旨在提升大语言模型(LLM)生…...
【C语言】static关键字的三种用法
【C语言】static关键字的三种用法 C语言中的static关键字是一个存储类说明符,它可以用来修饰变量和函数。static关键字的主要作用是控制变量或函数的生命周期和可见性。以下是static关键字的一些主要用法和含义: 局部静态变量: 当static修饰…...
STM32 PWMI模式测频率占空比
接线图: PWMI基本结构 代码配置: 与上一章输入捕获代码一样,根据结构体,需要在输入捕获单元再配置一个通道。我们调用一个函数 这个函数可以给结构体赋值,当我们定义了一遍结构体参数,再调用这个函数&…...
神经网络|(四)概率论基础知识-古典概型
【1】引言 前序学习了线性回归的基础知识,了解到最小二乘法可以做线性回归分析,但为何最小二乘法如此准确,这需要从概率论的角度给出依据。 因此从本文起,需要花一段时间来回顾概率论的基础知识。 【2】古典概型 古典概型是我…...
ubuntu20.04.6下运行VLC-Qt例子simple-player
下载examples-master.zip(https://github.com/vlc-qt/examples),编译运行simple-player 参考链接: https://blog.csdn.net/szn1316159505/article/details/143743735 本文运行环境 Qt 5.15.2 Qt creator 5.0.2 主要步骤…...
低代码产品插件功能一览
下图是统计的目前市面上流行的低代码、零代码产品的插件功能。 产品名称 产品类型 官方插件数量 支持拓展 官方插件功能 宜搭 零代码 3 暂不支持 云打印、CAD看图、打印表单详情 微搭 低代码 1 暂不支持 小程序 明道云 低代码 2 支持 视图、工作流节点 简道…...
Blazor-@bind
数据绑定 带有 value属性的标记都可以使用bind 绑定,<div>、<span>等非输入标记,无法使用bind 指令的,默认绑定了 onchange 事件,onchange 事件是指在输入框中输入内容之后,当失去焦点时执行。 page &qu…...
RK3568中使用QT opencv(显示基础图像)
文章目录 一、查看对应的开发环境是否有opencv的库二、QT使用opencv 一、查看对应的开发环境是否有opencv的库 在开发板中的/usr/lib目录下查看是否有opencv的库: 这里使用的是正点原子的ubuntu虚拟机,在他的虚拟机里面已经安装好了opencv的库。 二、…...
[答疑]DDD伪创新哪有资格和仿制药比
DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 远航 2025-1-24 10:40 最近的热门话题仿制药,想到您经常批评的伪创新,这两者是不是很像? UMLChina潘加宇 伪创新哪有资格和仿制药比。 仿制药的…...
C#,入门教程(05)——Visual Studio 2022源程序(源代码)自动排版的功能动画图示
上一篇: C#,入门教程(04)——Visual Studio 2022 数据编程实例:随机数与组合https://blog.csdn.net/beijinghorn/article/details/123533838https://blog.csdn.net/beijinghorn/article/details/123533838 新来的徒弟们交上来的C#代码&#…...
Android Wi-Fi 连接失败日志分析
1. Android wifi 关键日志总结 (1) Wi-Fi 断开 (CTRL-EVENT-DISCONNECTED reason3) 日志相关部分: 06-05 10:48:40.987 943 943 I wpa_supplicant: wlan0: CTRL-EVENT-DISCONNECTED bssid44:9b:c1:57:a8:90 reason3 locally_generated1解析: CTR…...
【kafka】Golang实现分布式Masscan任务调度系统
要求: 输出两个程序,一个命令行程序(命令行参数用flag)和一个服务端程序。 命令行程序支持通过命令行参数配置下发IP或IP段、端口、扫描带宽,然后将消息推送到kafka里面。 服务端程序: 从kafka消费者接收…...
阿里云ACP云计算备考笔记 (5)——弹性伸缩
目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
三体问题详解
从物理学角度,三体问题之所以不稳定,是因为三个天体在万有引力作用下相互作用,形成一个非线性耦合系统。我们可以从牛顿经典力学出发,列出具体的运动方程,并说明为何这个系统本质上是混沌的,无法得到一般解…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
LeetCode - 199. 二叉树的右视图
题目 199. 二叉树的右视图 - 力扣(LeetCode) 思路 右视图是指从树的右侧看,对于每一层,只能看到该层最右边的节点。实现思路是: 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...
莫兰迪高级灰总结计划简约商务通用PPT模版
莫兰迪高级灰总结计划简约商务通用PPT模版,莫兰迪调色板清新简约工作汇报PPT模版,莫兰迪时尚风极简设计PPT模版,大学生毕业论文答辩PPT模版,莫兰迪配色总结计划简约商务通用PPT模版,莫兰迪商务汇报PPT模版,…...
