Java 16进制 10进制 2进制数 相互的转换
在 Java 中,进行进制之间的转换时,除了功能的正确性外,效率和安全性也很重要。为了确保高效和相对安全的转换,我们通常需要考虑:
- 性能:使用内置的转换方法,如
Integer.toHexString()
、Integer.toBinaryString()
等,通常比手动实现转换更高效。 - 安全性:避免溢出和处理负数或符号位的问题。
以下是针对 16进制、10进制和2进制数的相互转换 的高效且相对安全的方法。
1. 十六进制(Hex) ↔ 十进制(Decimal)
十六进制到十进制: 使用 Integer.parseInt()
方法将十六进制字符串解析为十进制数字。
十进制到十六进制: 使用 Integer.toHexString()
方法将十进制数字转换为十六进制字符串。
示例代码:
public class BaseConversion {public static void main(String[] args) {// 十六进制到十进制String hex = "1A3F";int decimal = Integer.parseInt(hex, 16); // 使用 parseInt 方法将十六进制转为十进制System.out.println("Hex to Decimal: " + decimal);// 十进制到十六进制int decimalNum = 6703;String hexString = Integer.toHexString(decimalNum); // 使用 toHexString 方法将十进制转为十六进制System.out.println("Decimal to Hex: " + hexString.toUpperCase()); // 输出大写的十六进制}
}
输出:
Hex to Decimal: 6703
Decimal to Hex: 1A3F
2. 十六进制(Hex) ↔ 二进制(Binary)
十六进制到二进制: 首先将十六进制字符串转换为十进制,然后再转换为二进制。
二进制到十六进制: 首先将二进制字符串转换为十进制,然后再转换为十六进制。
示例代码:
public class BaseConversion {public static void main(String[] args) {// 十六进制到二进制String hex = "1A3F";int decimalFromHex = Integer.parseInt(hex, 16);String binaryFromHex = Integer.toBinaryString(decimalFromHex); // 十进制转二进制System.out.println("Hex to Binary: " + binaryFromHex);// 二进制到十六进制String binary = "1101000111111";int decimalFromBinary = Integer.parseInt(binary, 2); // 二进制转十进制String hexFromBinary = Integer.toHexString(decimalFromBinary); // 十进制转十六进制System.out.println("Binary to Hex: " + hexFromBinary.toUpperCase()); // 输出大写的十六进制}
}
输出:
Hex to Binary: 1101000111111
Binary to Hex: 1A3F
3. 十进制(Decimal) ↔ 二进制(Binary)
十进制到二进制: 使用 Integer.toBinaryString()
方法将十进制转换为二进制。
二进制到十进制: 使用 Integer.parseInt()
方法将二进制字符串解析为十进制数字。
示例代码:
public class BaseConversion {public static void main(String[] args) {// 十进制到二进制int decimal = 6703;String binary = Integer.toBinaryString(decimal); // 十进制转二进制System.out.println("Decimal to Binary: " + binary);// 二进制到十进制String binaryStr = "1101000111111";int decimalFromBinary = Integer.parseInt(binaryStr, 2); // 二进制转十进制System.out.println("Binary to Decimal: " + decimalFromBinary);}
}
输出:
Decimal to Binary: 1101000111111
Binary to Decimal: 6703
4. 高效与安全性考虑
- 高效性:
- 使用
Integer.parseInt()
和Integer.toBinaryString()
等标准库方法,通常比手动实现进制转换更高效。 - 不需要对负数特别处理,因为
parseInt()
和toBinaryString()
默认已经处理了符号位。
- 使用
- 安全性:
- 防止溢出:
Integer.parseInt()
方法的上限是Integer.MAX_VALUE
(即2147483647
)。如果你需要更大的数字,可以使用Long.parseLong()
或BigInteger
。 - 避免负数问题:
Integer.toBinaryString()
、Integer.toHexString()
和Integer.toString()
等方法都已自动处理负数的转换,适用于常见的整数类型。 - 使用大数字:对于超过 32 位的数字(比如
Long
类型或更大的数字),可以使用Long
或BigInteger
来处理,BigInteger
可以支持任意大小的整数。
- 防止溢出:
示例代码(使用 BigInteger
处理大数字):
import java.math.BigInteger;public class BaseConversion {public static void main(String[] args) {// BigInteger 适用于大数字转换String largeHex = "A3B2C4D5E6F7";BigInteger bigDecimal = new BigInteger(largeHex, 16); // 十六进制转大整数System.out.println("Large Hex to Decimal: " + bigDecimal);// 大整数转十六进制String bigHex = bigDecimal.toString(16); // 转回十六进制System.out.println("Large Decimal to Hex: " + bigHex.toUpperCase());}
}
输出:
Large Hex to Decimal: 181477716850295
Large Decimal to Hex: A3B2C4D5E6F7
总结:
- 十六进制 ↔ 十进制 使用
Integer.parseInt()
和Integer.toHexString()
。 - 十六进制 ↔ 二进制 使用
Integer.toBinaryString()
和Integer.parseInt()
。 - 十进制 ↔ 二进制 使用
Integer.toBinaryString()
和Integer.parseInt()
。 - 对于大数字,使用
BigInteger
类来处理超过 32 位的进制转换。
这种方法是 高效 的,并且通过 Java 内置的类,已经相对安全地处理了符号和溢出的问题。
以下是16进制、10进制和2进制之间的转换表格。这个表格展示了常见的数值在这三种进制之间的相互转换。
16进制、10进制、2进制数转换表
16进制 | 10进制 | 2进制 |
---|---|---|
0 | 0 | 0000 |
1 | 1 | 0001 |
2 | 2 | 0010 |
3 | 3 | 0011 |
4 | 4 | 0100 |
5 | 5 | 0101 |
6 | 6 | 0110 |
7 | 7 | 0111 |
8 | 8 | 1000 |
9 | 9 | 1001 |
A | 10 | 1010 |
B | 11 | 1011 |
C | 12 | 1100 |
D | 13 | 1101 |
E | 14 | 1110 |
F | 15 | 1111 |
10 | 16 | 10000 |
11 | 17 | 10001 |
12 | 18 | 10010 |
13 | 19 | 10011 |
14 | 20 | 10100 |
15 | 21 | 10101 |
16 | 22 | 10110 |
17 | 23 | 10111 |
18 | 24 | 11000 |
19 | 25 | 11001 |
1A | 26 | 11010 |
1B | 27 | 11011 |
1C | 28 | 11100 |
1D | 29 | 11101 |
1E | 30 | 11110 |
1F | 31 | 11111 |
20 | 32 | 100000 |
21 | 33 | 100001 |
22 | 34 | 100010 |
23 | 35 | 100011 |
24 | 36 | 100100 |
25 | 37 | 100101 |
26 | 38 | 100110 |
27 | 39 | 100111 |
28 | 40 | 101000 |
29 | 41 | 101001 |
2A | 42 | 101010 |
2B | 43 | 101011 |
2C | 44 | 101100 |
2D | 45 | 101101 |
2E | 46 | 101110 |
2F | 47 | 101111 |
30 | 48 | 110000 |
31 | 49 | 110001 |
32 | 50 | 110010 |
33 | 51 | 110011 |
34 | 52 | 110100 |
35 | 53 | 110101 |
36 | 54 | 110110 |
37 | 55 | 110111 |
38 | 56 | 111000 |
39 | 57 | 111001 |
3A | 58 | 111010 |
3B | 59 | 111011 |
3C | 60 | 111100 |
3D | 61 | 111101 |
3E | 62 | 111110 |
3F | 63 | 111111 |
相关文章:
Java 16进制 10进制 2进制数 相互的转换
在 Java 中,进行进制之间的转换时,除了功能的正确性外,效率和安全性也很重要。为了确保高效和相对安全的转换,我们通常需要考虑: 性能:使用内置的转换方法,如 Integer.toHexString()、Integer.…...

力扣动态规划-14【算法学习day.108】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?建议灵神的题单和代码随想录)和记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关…...

数据结构day02
1 线性表的定义和基本操作 1.1 线性表的定义 分析: 1.1.1 问题一:我们为什么探讨线性表的定义和基本操作 在研究数据结构时,需要重点关注三个方面:逻辑结构、物理结构以及数据的运算。在本节内容里,我们首先来介绍线…...
随笔 | 写在一月的最后一天
. 前言 这个月比预想中过的要快更多。突然回看这一个月,还有点不知从何提笔。 整个一月可以总结为以下几个关键词: 期许,保持期许出现休息 . 期许 关于期许,没有什么时候比一年伊始更适合设立目标和计划的了。但令人惭愧的…...

JVM方法区
一、栈、堆、方法区的交互关系 二、方法区的理解: 尽管所有的方法区在逻辑上属于堆的一部分,但是一些简单的实现可能不会去进行垃圾收集或者进行压缩,方法区可以看作是一块独立于Java堆的内存空间。 方法区(Method Area)与Java堆一样,是各个…...
一文读懂fgc之cms
一文读懂 fgc之cms-实战篇 1. 前言 线上应用运行过程中可能会出现内存使用率较高,甚至达到95仍然不触发fgc的情况,存在内存打满风险,持续触发fgc回收;或者内存占用率较低时触发了fgc,导致某些接口tp99,tp…...

MYSQL 商城系统设计 商品数据表的设计 商品 商品类别 商品选项卡 多表查询
介绍 在开发商品模块时,通常使用分表的方式进行查询以及关联。在通过表连接的方式进行查询。每个商品都有不同的分类,每个不同分类下面都有商品规格可以选择,每个商品分类对应商品规格都有自己的价格和库存。在实际的开发中应该给这些表进行…...

HTB:Administrator[WriteUP]
目录 连接至HTB服务器并启动靶机 信息收集 使用rustscan对靶机TCP端口进行开放扫描 将靶机TCP开放端口号提取并保存 使用nmap对靶机TCP开放端口进行脚本、服务扫描 使用nmap对靶机TCP开放端口进行漏洞、系统扫描 使用nmap对靶机常用UDP端口进行开放扫描 使用nmap对靶机…...

开源项目Umami网站统计MySQL8.0版本Docker+Linux安装部署教程
Umami是什么? Umami是一个开源项目,简单、快速、专注用户隐私的网站统计项目。 下面来介绍如何本地安装部署Umami项目,进行你的网站统计接入。特别对于首次使用docker的萌新有非常好的指导、参考和帮助作用。 Umami的github和docker镜像地…...

FBX SDK的使用:基础知识
Windows环境配置 FBX SDK安装后,目录下有三个文件夹: include 头文件lib 编译的二进制库,根据你项目的配置去包含相应的库samples 官方使用案列 动态链接 libfbxsdk.dll, libfbxsdk.lib是动态库,需要在配置属性->C/C->预…...

VisionMamba安装
1.安装python环境 conda create -n mamba python3.10.13 -y conda activate mamba2.安装torch环境 conda install cudatoolkit11.8 -c nvidia pip install torch2.1.1 torchvision0.16.1 torchaudio2.1.1 --index-url https://download.pytorch.org/whl/cu1183.安装其他包 c…...
h2oGPT
文章目录 一、关于 h2oGPT二、现场演示特点 三、开始行动安装h2oGPT拼贴画演示资源文档指南开发致谢为什么选择 H2O.ai?免责声明 一、关于 h2oGPT 使用文档、图像、视频等与本地GPT进行私人聊天。100%私人,Apache 2.0。支持oLLaMa、Mixtral、llama. cpp…...

Win10安装MySQL、Pycharm连接MySQL,Pycharm中运行Django
一、Windows系统mysql相关操作 1、 检查系统是否安装mysql 按住win r (调出运行窗口) 输入service.msc,点击【确定】 image.png 打开服务列表-检查是否有mysql服务 (compmgmt.msc) image.png 2、 Windows安装MySQL …...

使用Pygame制作“俄罗斯方块”游戏
1. 前言 俄罗斯方块(Tetris) 是一款由方块下落、行消除等核心规则构成的经典益智游戏: 每次从屏幕顶部出现一个随机的方块(由若干小方格组成),玩家可以左右移动或旋转该方块,让它合适地堆叠在…...

【Block总结】ODConv动态卷积,适用于CV任务|即插即用
一、论文信息 论文标题:Omni-Dimensional Dynamic Convolution作者:Chao Li, Aojun Zhou, Anbang Yao发表会议:ICLR 2022论文链接:https://arxiv.org/pdf/2209.07947GitHub链接:https://github.com/OSVAI/ODConv 二…...
RK3568 opencv播放视频
文章目录 一、opencv相关视频播放类1. `cv::VideoCapture` 类主要构造方法:主要方法:2. 视频播放基本流程代码示例:3. 获取和设置视频属性4. 结合 FFmpeg 使用5. OpenCV 视频播放的局限性6. 结合 Qt 实现更高级的视频播放总结二、QT中的代码实现一、opencv相关视频播放类 在…...

《LLM大语言模型+RAG实战+Langchain+ChatGLM-4+Transformer》
文章目录 Langchain的定义Langchain的组成三个核心组件实现整个核心组成部分 为什么要使用LangchainLangchain的底层原理Langchain实战操作LangSmithLangChain调用LLM安装openAI库-国内镜像源代码运行结果小结 使用Langchain的提示模板部署Langchain程序安装langserve代码请求格…...

【搜索回溯算法篇】:拓宽算法视野--BFS如何解决拓扑排序问题
✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:搜索回溯算法篇–CSDN博客 文章目录 一.广度优先搜索(BFS)解决拓扑排…...

计算机网络 (61)移动IP
前言 移动IP(Mobile IP)是由Internet工程任务小组(Internet Engineering Task Force,IETF)提出的一个协议,旨在解决移动设备在不同网络间切换时的通信问题,确保移动设备可以在离开原有网络或子网…...

Elasticsearch+kibana安装(简单易上手)
下载ES( Download Elasticsearch | Elastic ) 将ES安装包解压缩 解压后目录如下: 修改ES服务端口(可以不修改) 启动ES 记住这些内容 验证ES是否启动成功 下载kibana( Download Kibana Free | Get Started Now | Elastic ) 解压后的kibana目…...

label-studio的使用教程(导入本地路径)
文章目录 1. 准备环境2. 脚本启动2.1 Windows2.2 Linux 3. 安装label-studio机器学习后端3.1 pip安装(推荐)3.2 GitHub仓库安装 4. 后端配置4.1 yolo环境4.2 引入后端模型4.3 修改脚本4.4 启动后端 5. 标注工程5.1 创建工程5.2 配置图片路径5.3 配置工程类型标签5.4 配置模型5.…...
【ROS】Nav2源码之nav2_behavior_tree-行为树节点列表
1、行为树节点分类 在 Nav2(Navigation2)的行为树框架中,行为树节点插件按照功能分为 Action(动作节点)、Condition(条件节点)、Control(控制节点) 和 Decorator(装饰节点) 四类。 1.1 动作节点 Action 执行具体的机器人操作或任务,直接与硬件、传感器或外部系统…...
第25节 Node.js 断言测试
Node.js的assert模块主要用于编写程序的单元测试时使用,通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试,通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
智能AI电话机器人系统的识别能力现状与发展水平
一、引言 随着人工智能技术的飞速发展,AI电话机器人系统已经从简单的自动应答工具演变为具备复杂交互能力的智能助手。这类系统结合了语音识别、自然语言处理、情感计算和机器学习等多项前沿技术,在客户服务、营销推广、信息查询等领域发挥着越来越重要…...

【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
Go 语言并发编程基础:无缓冲与有缓冲通道
在上一章节中,我们了解了 Channel 的基本用法。本章将重点分析 Go 中通道的两种类型 —— 无缓冲通道与有缓冲通道,它们在并发编程中各具特点和应用场景。 一、通道的基本分类 类型定义形式特点无缓冲通道make(chan T)发送和接收都必须准备好࿰…...

通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!
【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...

如何把工业通信协议转换成http websocket
1.现状 工业通信协议多数工作在边缘设备上,比如:PLC、IOT盒子等。上层业务系统需要根据不同的工业协议做对应开发,当设备上用的是modbus从站时,采集设备数据需要开发modbus主站;当设备上用的是西门子PN协议时…...