当前位置: 首页 > news >正文

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

Janus-Pro-7B介绍

Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型,它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本,还可以处理图像等其他模态的信息。
模型主要特点:Permalink
统一的架构: Janus-Pro 采用单一 transformer 架构来处理文本和图像信息,实现了真正的多模态理解和生成。
解耦的视觉编码: 为了更好地平衡理解和生成任务,Janus-Pro 将视觉编码解耦为独立的路径,提高了模型的灵活性和性能。
强大的性能: 在多个基准测试中,Janus-Pro 的性能超越了之前的统一模型,甚至可以与特定任务的模型相媲美。
开源: Janus-Pro-7B 是开源的,这意味着研究人员和开发者可以自由地访问和使用它,推动 AI 领域的创新。
具体来说,Janus-Pro-7B 有以下优势:

图像理解: 能够准确地识别和理解图像中的对象、场景和关系。
图像生成: 可以根据文本描述生成高质量的图像,甚至可以进行图像编辑和转换。
文本生成: 可以生成流畅、连贯的文本,例如故事、诗歌、代码等。
多模态推理: 可以结合文本和图像信息进行推理,例如根据图像内容回答问题,或者根据文本描述生成图像。
与其他模型的比较:
超越 DALL-E 3 和 Stable Diffusion: 在 GenEval 和 DPG-Bench 等基准测试中,Janus-Pro-7B 的性能优于 OpenAI 的 DALL-E 3 和 Stability AI 的 Stable Diffusion。
基于 DeepSeek-LLM: Janus-Pro 建立在 DeepSeek-LLM-1.5b-base/DeepSeek-LLM-7b-base 的基础上,并对其进行了多模态扩展。
应用场景:
Janus-Pro-7B 具有广泛的应用场景,例如:

内容创作: 可以帮助用户生成高质量的图像、文本和其他多媒体内容。
教育: 可以用于创建交互式学习体验,例如根据文本描述生成图像,或者根据图像内容回答问题。
客户服务: 可以用于构建更智能的聊天机器人,能够理解和回应用户的多模态查询。
辅助设计: 可以帮助设计师生成创意概念,并将其转化为可视化原型

1 启动Anaconda环境

在这里插入图片描述

在这里插入图片描述

2 进入命令环境

conda create -n myenv python=3.10 -ygit clone https://github.com/deepseek-ai/Janus.gitcd Januspip install -e .pip install webencodings beautifulsoup4 tinycss2pip install -e .[gradio]pip install 'pexpect>4.3'python demo/app_januspro.py

3 遇到默认配置下C盘磁盘空间不足问题

(myenvp) C:\Users\Administrator>python demo/app_januspro.py
python: can't open file 'C:\\Users\\Administrator\\demo\\app_januspro.py': [Errno 2] No such file or directory(myenvp) C:\Users\Administrator>e:(myenvp) E:\>cd ai(myenvp) E:\AI>cd Janus(myenvp) E:\AI\Janus>dir驱动器 E 中的卷是 chia-12T-1卷的序列号是 0AF0-159BE:\AI\Janus 的目录2025/01/31  12:26    <DIR>          .
2025/01/30  00:53    <DIR>          ..
2025/01/30  00:53               115 .gitattributes
2025/01/30  00:53             7,301 .gitignore
2025/01/30  01:47    <DIR>          .gradio
2025/01/30  01:18    <DIR>          .locks
2025/01/31  12:26                 0 4.3'
2025/01/30  00:53    <DIR>          demo
2025/01/30  00:53             4,515 generation_inference.py
2025/01/30  00:53    <DIR>          images
2025/01/30  00:53             2,642 inference.py
2025/01/30  00:53             5,188 interactivechat.py
2025/01/30  01:04    <DIR>          janus
2025/01/31  12:25    <DIR>          janus.egg-info
2025/01/30  00:53         2,846,268 janus_pro_tech_report.pdf
2025/01/30  00:53             1,065 LICENSE-CODE
2025/01/30  00:53            13,718 LICENSE-MODEL
2025/01/30  00:53             3,069 Makefile
2025/01/30  01:47    <DIR>          models--deepseek-ai--Janus-Pro-7B
2025/01/30  00:53             1,111 pyproject.toml
2025/01/30  00:53            26,742 README.md
2025/01/30  00:53               278 requirements.txt
2025/01/30  01:18                 1 version.txt14 个文件      2,912,013 字节9 个目录 9,387,683,614,720 可用字节

3.1 设置HF_DATASETS_CACHE环境变量没解决问题

(myenvp) E:\AI\Janus>set HF_DATASETS_CACHE="E:\AI\Janus"(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
Downloading shards:   0%|                                                                        | 0/2 [00:00<?, ?it/s]D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py:651: UserWarning: Not enough free disk space to download the file. The expected file size is: 9988.18 MB. The target location C:\Users\Administrator\.cache\huggingface\hub\models--deepseek-ai--Janus-Pro-7B\blobs only has 8154.37 MB free disk space.warnings.warn(
pytorch_model-00001-of-00002.bin:  37%|███████████████▉                           | 3.71G/9.99G [00:05<02:38, 39.5MB/s]
Downloading shards:   0%|                                                                        | 0/2 [00:06<?, ?it/s]
Traceback (most recent call last):File "E:\AI\Janus\demo\app_januspro.py", line 19, in <module>vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrainedreturn model_class.from_pretrained(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\modeling_utils.py", line 3944, in from_pretrainedresolved_archive_file, sharded_metadata = get_checkpoint_shard_files(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 1098, in get_checkpoint_shard_filescached_filename = cached_file(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 403, in cached_fileresolved_file = hf_hub_download(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fnreturn fn(*args, **kwargs)File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 860, in hf_hub_downloadreturn _hf_hub_download_to_cache_dir(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1009, in _hf_hub_download_to_cache_dir_download_to_tmp_and_move(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1543, in _download_to_tmp_and_movehttp_get(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 452, in http_getfor chunk in r.iter_content(chunk_size=constants.DOWNLOAD_CHUNK_SIZE):File "D:\anaconda3\envs\myenvp\lib\site-packages\requests\models.py", line 820, in generateyield from self.raw.stream(chunk_size, decode_content=True)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 1066, in streamdata = self.read(amt=amt, decode_content=decode_content)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 955, in readdata = self._raw_read(amt)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 879, in _raw_readdata = self._fp_read(amt, read1=read1) if not fp_closed else b""File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 862, in _fp_readreturn self._fp.read(amt) if amt is not None else self._fp.read()File "D:\anaconda3\envs\myenvp\lib\http\client.py", line 466, in reads = self.fp.read(amt)File "D:\anaconda3\envs\myenvp\lib\socket.py", line 717, in readintoreturn self._sock.recv_into(b)File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1307, in recv_intoreturn self.read(nbytes, buffer)File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1163, in readreturn self._sslobj.read(len, buffer)
KeyboardInterrupt
^C

3.2 设置环境变量HF_HOME解决问题

(myenvp) E:\AI\Janus>set HF_HOME=E:\AI\Janus(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
config.json: 100%|████████████████████████████████████████████████████████████████████████| 1.28k/1.28k [00:00<?, ?B/s]
pytorch_model.bin.index.json: 100%|███████████████████████████████████████████████| 89.0k/89.0k [00:00<00:00, 1.67MB/s]
model.safetensors.index.json: 100%|███████████████████████████████████████████████| 92.8k/92.8k [00:00<00:00, 2.99MB/s]
pytorch_model-00001-of-00002.bin:  15%|██████▌                                    | 1.53G/9.99G [00:37<03:26, 41.0MB/s]
Downloading shards:   0%|                                                                        | 0/2 [00:37<?, ?it/s]
Traceback (most recent call last):File "E:\AI\Janus\demo\app_januspro.py", line 19, in <module>vl_gpt = AutoModelForCausalLM.from_pretrained(model_path,File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\auto_factory.py", line 564, in from_pretrainedreturn model_class.from_pretrained(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\modeling_utils.py", line 3944, in from_pretrainedresolved_archive_file, sharded_metadata = get_checkpoint_shard_files(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 1098, in get_checkpoint_shard_filescached_filename = cached_file(File "D:\anaconda3\envs\myenvp\lib\site-packages\transformers\utils\hub.py", line 403, in cached_fileresolved_file = hf_hub_download(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\utils\_validators.py", line 114, in _inner_fnreturn fn(*args, **kwargs)File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 860, in hf_hub_downloadreturn _hf_hub_download_to_cache_dir(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1009, in _hf_hub_download_to_cache_dir_download_to_tmp_and_move(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 1543, in _download_to_tmp_and_movehttp_get(File "D:\anaconda3\envs\myenvp\lib\site-packages\huggingface_hub\file_download.py", line 452, in http_getfor chunk in r.iter_content(chunk_size=constants.DOWNLOAD_CHUNK_SIZE):File "D:\anaconda3\envs\myenvp\lib\site-packages\requests\models.py", line 820, in generateyield from self.raw.stream(chunk_size, decode_content=True)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 1066, in streamdata = self.read(amt=amt, decode_content=decode_content)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 955, in readdata = self._raw_read(amt)File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 879, in _raw_readdata = self._fp_read(amt, read1=read1) if not fp_closed else b""File "D:\anaconda3\envs\myenvp\lib\site-packages\urllib3\response.py", line 862, in _fp_readreturn self._fp.read(amt) if amt is not None else self._fp.read()File "D:\anaconda3\envs\myenvp\lib\http\client.py", line 466, in reads = self.fp.read(amt)File "D:\anaconda3\envs\myenvp\lib\socket.py", line 717, in readintoreturn self._sock.recv_into(b)File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1307, in recv_intoreturn self.read(nbytes, buffer)File "D:\anaconda3\envs\myenvp\lib\ssl.py", line 1163, in readreturn self._sslobj.read(len, buffer)
KeyboardInterrupt
^C

3.3 如果没下载好模型文件忽略这步

如果之前已经下载好模型文件,将models–deepseek-ai–Janus-Pro-7B目录拷贝到E:\AI\Janus\hub

(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:44<00:00, 22.13s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: ignore_id, num_image_tokens, add_special_token, mask_prompt, image_tag, sft_format.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://cf6180260c7448cc2b.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Traceback (most recent call last):File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2361, in block_threadtime.sleep(0.1)
KeyboardInterruptDuring handling of the above exception, another exception occurred:Traceback (most recent call last):File "E:\AI\Janus\demo\app_januspro.py", line 244, in <module>demo.launch(share=True)File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2266, in launchself.block_thread()File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2365, in block_threadself.server.close()File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\networking.py", line 75, in closeself.thread.join()File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1096, in joinself._wait_for_tstate_lock()File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1116, in _wait_for_tstate_lockif lock.acquire(block, timeout):
KeyboardInterrupt
Killing tunnel 127.0.0.1:7860 <> https://cf6180260c7448cc2b.gradio.live
^C

4 强制使用显卡

(myenvp) E:\AI\Janus>python demo/app_januspro.py --device cuda
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.29s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: num_image_tokens, image_tag, ignore_id, mask_prompt, sft_format, add_special_token.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://342ecb20d5120e7d8c.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Traceback (most recent call last):File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2361, in block_threadtime.sleep(0.1)
KeyboardInterruptDuring handling of the above exception, another exception occurred:Traceback (most recent call last):File "E:\AI\Janus\demo\app_januspro.py", line 244, in <module>demo.launch(share=True)File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2266, in launchself.block_thread()File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\blocks.py", line 2365, in block_threadself.server.close()File "D:\anaconda3\envs\myenvp\lib\site-packages\gradio\networking.py", line 75, in closeself.thread.join()File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1096, in joinself._wait_for_tstate_lock()File "D:\anaconda3\envs\myenvp\lib\threading.py", line 1116, in _wait_for_tstate_lockif lock.acquire(block, timeout):
KeyboardInterrupt
Killing tunnel 127.0.0.1:7860 <> https://342ecb20d5120e7d8c.gradio.live
^C

5 部分部署过程

(myenvp) E:\AI\Janus>pip install -e .
Obtaining file:///E:/AI/JanusInstalling build dependencies ... doneChecking if build backend supports build_editable ... doneGetting requirements to build editable ... donePreparing editable metadata (pyproject.toml) ... done
Requirement already satisfied: torch>=2.0.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (2.5.1+cu121)
Requirement already satisfied: transformers>=4.38.2 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (4.48.1)
Requirement already satisfied: timm>=0.9.16 in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (1.0.14)
Requirement already satisfied: accelerate in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (1.3.0)
Requirement already satisfied: sentencepiece in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (0.1.96)
Requirement already satisfied: attrdict in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (2.0.1)
Requirement already satisfied: einops in d:\anaconda3\envs\myenvp\lib\site-packages (from janus==1.0.0) (0.8.0)
Requirement already satisfied: torchvision in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.20.1+cu121)
Requirement already satisfied: pyyaml in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (6.0.2)
Requirement already satisfied: huggingface_hub in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.28.0)
Requirement already satisfied: safetensors in d:\anaconda3\envs\myenvp\lib\site-packages (from timm>=0.9.16->janus==1.0.0) (0.5.2)
Requirement already satisfied: filelock in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.17.0)
Requirement already satisfied: typing-extensions>=4.8.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (4.12.2)
Requirement already satisfied: networkx in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.4.2)
Requirement already satisfied: jinja2 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (3.1.5)
Requirement already satisfied: fsspec in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (2024.12.0)
Requirement already satisfied: sympy==1.13.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from torch>=2.0.1->janus==1.0.0) (1.13.1)
Requirement already satisfied: mpmath<1.4,>=1.1.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from sympy==1.13.1->torch>=2.0.1->janus==1.0.0) (1.3.0)
Requirement already satisfied: numpy>=1.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (1.26.4)
Requirement already satisfied: packaging>=20.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (24.2)
Requirement already satisfied: regex!=2019.12.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (2024.11.6)
Requirement already satisfied: requests in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (2.32.3)
Requirement already satisfied: tokenizers<0.22,>=0.21 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (0.21.0)
Requirement already satisfied: tqdm>=4.27 in d:\anaconda3\envs\myenvp\lib\site-packages (from transformers>=4.38.2->janus==1.0.0) (4.64.0)
Requirement already satisfied: psutil in d:\anaconda3\envs\myenvp\lib\site-packages (from accelerate->janus==1.0.0) (6.1.1)
Requirement already satisfied: six in d:\anaconda3\envs\myenvp\lib\site-packages (from attrdict->janus==1.0.0) (1.17.0)
Requirement already satisfied: colorama in d:\anaconda3\envs\myenvp\lib\site-packages (from tqdm>=4.27->transformers>=4.38.2->janus==1.0.0) (0.4.5)
Requirement already satisfied: MarkupSafe>=2.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from jinja2->torch>=2.0.1->janus==1.0.0) (2.1.5)
Requirement already satisfied: charset-normalizer<4,>=2 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (3.4.1)
Requirement already satisfied: idna<4,>=2.5 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (3.10)
Requirement already satisfied: urllib3<3,>=1.21.1 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (2.3.0)
Requirement already satisfied: certifi>=2017.4.17 in d:\anaconda3\envs\myenvp\lib\site-packages (from requests->transformers>=4.38.2->janus==1.0.0) (2024.12.14)
Requirement already satisfied: pillow!=8.3.*,>=5.3.0 in d:\anaconda3\envs\myenvp\lib\site-packages (from torchvision->timm>=0.9.16->janus==1.0.0) (10.4.0)
Building wheels for collected packages: janusBuilding editable for janus (pyproject.toml) ... doneCreated wheel for janus: filename=janus-1.0.0-0.editable-py3-none-any.whl size=16196 sha256=cdb0ebb0c36046bf768a84cbf9208824eadb31fadea888f3b6ff102de576f743Stored in directory: C:\Users\Administrator\AppData\Local\Temp\pip-ephem-wheel-cache-dhnej7iy\wheels\e4\87\ba\dd6e5c70086c786d25bcd3e6bddaeb7c46f5ae69dc25ea8be0
Successfully built janus
Installing collected packages: janusAttempting uninstall: janusFound existing installation: janus 1.0.0Uninstalling janus-1.0.0:Successfully uninstalled janus-1.0.0
Successfully installed janus-1.0.0(myenvp) E:\AI\Janus>pip install webencodings beautifulsoup4 tinycss2
Requirement already satisfied: webencodings in d:\anaconda3\envs\myenvp\lib\site-packages (0.5.1)
Requirement already satisfied: beautifulsoup4 in d:\anaconda3\envs\myenvp\lib\site-packages (4.12.3)
Requirement already satisfied: tinycss2 in d:\anaconda3\envs\myenvp\lib\site-packages (1.4.0)
Requirement already satisfied: soupsieve>1.2 in d:\anaconda3\envs\myenvp\lib\site-packages (from beautifulsoup4) (2.6)(myenvp) E:\AI\Janus>pip install 'pexpect>4.3'
ERROR: Invalid requirement: "'pexpect": Expected package name at the start of dependency specifier'pexpect^(myenvp) E:\AI\Janus>pip install 'pexpect>4.3'
ERROR: Invalid requirement: "'pexpect": Expected package name at the start of dependency specifier'pexpect^(myenvp) E:\AI\Janus>pip install "pexpect>4.3"
Requirement already satisfied: pexpect>4.3 in d:\anaconda3\envs\myenvp\lib\site-packages (4.9.0)
Requirement already satisfied: ptyprocess>=0.5 in d:\anaconda3\envs\myenvp\lib\site-packages (from pexpect>4.3) (0.7.0)(myenvp) E:\AI\Janus>python demo/app_januspro.py
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.25s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: ignore_id, sft_format, image_tag, num_image_tokens, mask_prompt, add_special_token.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://b0590adff3d54b2255.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)
Keyboard interruption in main thread... closing server.
Killing tunnel 127.0.0.1:7860 <> https://b0590adff3d54b2255.gradio.live(myenvp) E:\AI\Janus>python demo/app_januspro.py --device cuda
Python version is above 3.10, patching the collections module.
D:\anaconda3\envs\myenvp\lib\site-packages\transformers\models\auto\image_processing_auto.py:590: FutureWarning: The image_processor_class argument is deprecated and will be removed in v4.42. Please use `slow_image_processor_class`, or `fast_image_processor_class` insteadwarnings.warn(
Loading checkpoint shards: 100%|█████████████████████████████████████████████████████████| 2/2 [00:06<00:00,  3.05s/it]
Using a slow image processor as `use_fast` is unset and a slow processor was saved with this model. `use_fast=True` will be the default behavior in v4.48, even if the model was saved with a slow processor. This will result in minor differences in outputs. You'll still be able to use a slow processor with `use_fast=False`.
You are using the default legacy behaviour of the <class 'transformers.models.llama.tokenization_llama_fast.LlamaTokenizerFast'>. This is expected, and simply means that the `legacy` (previous) behavior will be used so nothing changes for you. If you want to use the new behaviour, set `legacy=False`. This should only be set if you understand what it means, and thoroughly read the reason why this was added as explained in https://github.com/huggingface/transformers/pull/24565 - if you loaded a llama tokenizer from a GGUF file you can ignore this message.
Some kwargs in processor config are unused and will not have any effect: image_tag, sft_format, ignore_id, add_special_token, num_image_tokens, mask_prompt.
Running on local URL:  http://127.0.0.1:7860
IMPORTANT: You are using gradio version 3.48.0, however version 4.44.1 is available, please upgrade.
--------
Running on public URL: https://72d4294c2d37f91dc8.gradio.liveThis share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)

6 使用效果

6.1 识别图片

在这里插入图片描述

在这里插入图片描述

6.2 文生图

在这里插入图片描述

6.2.1 浣熊师父身穿滴水服装,扮演街头歹徒。

Master shifu racoon wearing drip attire as a street gangster.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.2 美丽女孩的脸

The face of a beautiful girl
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

6.2.3 丛林中的宇航员,冷色调,柔和的色彩,细节丰富,8k

Astronaut in a jungle, cold color palette, muted colors, detailed, 8k
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.4 反光面上的一杯红酒。

A glass of red wine on a reflective surface.
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.5 一只可爱又迷人的小狐狸,有着大大的棕色眼睛,背景中秋叶迷人,永恒、蓬松、闪亮的鬃毛、花瓣、童话般的氛围,虚幻引擎 5 和 Octane 渲染器,细节丰富,具有照片级真实感,具有电影感,色彩自然。

A cute and adorable baby fox with big brown eyes, autumn leaves in the background enchanting,immortal,fluffy, shiny mane,Petals,fairyism,unreal engine 5 and Octane Render,highly detailed, photorealistic, cinematic, natural colors.
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

6.2.6 这幅画中的眼睛设计精巧,背景为圆形,饰有华丽的漩涡图案,既有现实主义的色彩,也有超现实主义的色彩。画中焦点是一只鲜艳的蓝色虹膜,周围环绕着从瞳孔向外辐射的细纹,营造出深度和强度。睫毛又长又黑,在周围的皮肤上投下微妙的阴影,皮肤看起来很光滑,但略带纹理,仿佛随着时间的流逝而老化或风化。眼睛上方有一个类似古典建筑的石头结构,为构图增添了神秘感和永恒的优雅。这一建筑元素与周围的有机曲线形成鲜明而和谐的对比。眼睛下方是另一个让人联想到巴洛克艺术的装饰图案,进一步增强了每个精心制作的细节所蕴含的整体永恒感。总体而言,氛围散发着一种神秘的气氛,与暗示永恒的元素无缝交织在一起,通过现实纹理和超现实艺术的并置实现。每一个组成部分——从吸引眼球的复杂设计到上方古老的石块——都以独特的方式创造出充满神秘魅力的视觉盛宴。

The image features an intricately designed eye set against a circular backdrop adorned with ornate swirl patterns that evoke both realism and surrealism. At the center of attention is a strikingly vivid blue iris surrounded by delicate veins radiating outward from the pupil to create depth and intensity. The eyelashes are long and dark, casting subtle shadows on the skin around them which appears smooth yet slightly textured as if aged or weathered over time.

Above the eye, there’s a stone-like structure resembling part of classical architecture, adding layers of mystery and timeless elegance to the composition. This architectural element contrasts sharply but harmoniously with the organic curves surrounding it. Below the eye lies another decorative motif reminiscent of baroque artistry, further enhancing the overall sense of eternity encapsulated within each meticulously crafted detail.

Overall, the atmosphere exudes a mysterious aura intertwined seamlessly with elements suggesting timelessness, achieved through the juxtaposition of realistic textures and surreal artistic flourishes. Each component—from the intricate designs framing the eye to the ancient-looking stone piece above—contributes uniquely towards creating a visually captivating tableau imbued with enigmatic allure.

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

相关文章:

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操

本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操 Janus-Pro-7B介绍 Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型&#xff0c;它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本&#xff0c;还可以处理图像等其他模态的信息。 模型主要特点:Permalink…...

Java开发vscode环境搭建

1 几个名词 JDK Java Development Kit JRE Java Runtion Environment JVM JDK 包括 Compiler,debugger,JRE等。JRE包括JVM和Runtime Library。 2 配置环境 2.1 安装JDK 类比 C/C的 g工具 官网&#xff1a;https://www.oracle.com/java/technologies/downloads/ 根据自己使…...

深入解析:一个简单的浮动布局 HTML 示例

深入解析&#xff1a;一个简单的浮动布局 HTML 示例 示例代码解析代码结构分析1. HTML 结构2. CSS 样式 核心功能解析1. 浮动布局&#xff08;Float&#xff09;2. 清除浮动&#xff08;Clear&#xff09;3. 其他样式 效果展示代码优化与扩展总结 在网页设计中&#xff0c;浮动…...

车载软件 --- 大一新生入门汽车零部件嵌入式开发

我是穿拖鞋的汉子&#xff0c;魔都中坚持长期主义的汽车电子工程师。 老规矩&#xff0c;分享一段喜欢的文字&#xff0c;避免自己成为高知识低文化的工程师&#xff1a; 简单&#xff0c;单纯&#xff0c;喜欢独处&#xff0c;独来独往&#xff0c;不易合同频过着接地气的生活…...

DDD - 领域驱动设计分层架构:构建可演化的微服务架构

文章目录 引言1. 什么是DDD分层架构&#xff1f;1.1 DDD分层架构的演变1.2 四层架构的起源与问题1.3 依赖倒置和五层架构 2. DDD分层架构的核心层次2.1 用户接口层&#xff08;User Interface Layer&#xff09;2.2 应用层&#xff08;Application Layer&#xff09;2.3 领域层…...

2025数学建模美赛|赛题翻译|E题

2025数学建模美赛&#xff0c;E题赛题翻译 更多美赛内容持续更新中......

DeepSeek-V3 与 DeepSeek R1 对比分析:技术与应用的全面解析

一、背景 在当今科技飞速发展的时代&#xff0c;深度学习技术如同一股强大的浪潮&#xff0c;席卷了自然语言处理&#xff08;NLP&#xff09;、计算机视觉&#xff08;CV&#xff09;以及多模态模型等众多领域。从智能语音助手到图像识别技术&#xff0c;从文本生成工具到多模…...

qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记

qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记 文章目录 qt-Quick3D笔记之官方例程Runtimeloader Example运行笔记1.例程运行效果2.例程缩略图3.项目文件列表4.main.qml5.main.cpp6.CMakeLists.txt 1.例程运行效果 运行该项目需要自己准备一个模型文件 2.例程缩略图…...

Linux内核中的页面错误处理机制与按需分页技术

在现代操作系统中,内存管理是核心功能之一,而页面错误(Page Fault)处理机制是内存管理的重要组成部分。当程序访问一个尚未映射到物理内存的虚拟地址时,CPU会触发页面错误异常,内核需要捕获并处理这种异常,以决定如何响应,例如加载缺失的页面、处理权限错误等。Linux内…...

PHP实现混合加密方式,提高加密的安全性(代码解密)

代码1&#xff1a; <?php // 需要加密的内容 $plaintext 授权服务器拒绝连接;// 1. AES加密部分 $aesKey openssl_random_pseudo_bytes(32); // 生成256位AES密钥 $iv openssl_random_pseudo_bytes(16); // 生成128位IV// AES加密&#xff08;CBC模式&#xff09…...

使用openwrt搭建ipsec隧道

背景&#xff1a;最近同事遇到了个ipsec问题&#xff0c;做的ipsec特性&#xff0c;ftp下载ipv6性能只有100kb, 正面定位该问题也蛮久了&#xff0c;项目没有用openwrt, 不过用了开源组件strongswan, 加密算法这些也是内核自带的&#xff0c;想着开源的不太可能有问题&#xff…...

大语言模型(LLM)模拟金融市场参与者行为

大语言模型(LLM)模拟金融市场参与者行为 研究背景 传统深度学习模型通过识别市场数据历史模式预测市场,但未捕捉个体决策过程。LLM 虽能学习人类对不同提示的反应,但在模拟金融市场参与者时面临挑战:个体投资者不总是理性决策,LLM 可能无法捕捉;LLM 数值和金融知识可靠…...

用一个例子详细说明python单例模式

单例模式是一种设计模式&#xff0c;它确保一个类只有一个实例&#xff0c;并提供一个全局访问点来访问该实例。这在需要控制资源&#xff08;如数据库连接、文件系统等&#xff09;的访问时非常有用。 下面是一个使用Python实现单例模式的例子&#xff1a; class Singleton:…...

第1章 量子暗网中的血色黎明

月球暗面的危机与阴谋 量子隧穿效应催生的幽蓝电弧&#xff0c;于环形山表面肆意跳跃&#xff0c;仿若无数奋力挣扎的机械蠕虫&#xff0c;将月球暗面的死寂打破&#xff0c;徒增几分诡异。艾丽伫立在被遗弃的“广寒宫”量子基站顶端&#xff0c;机械义眼之中&#xff0c;倒映着…...

LeetCode--84. 柱状图中最大的矩形【单调栈】

84. 柱状图中最大的矩形 正文 题目如下 给定 n 个非负整数&#xff0c;用来表示柱状图中各个柱子的高度。每个柱子彼此相邻&#xff0c;且宽度为 1 。 求在该柱状图中&#xff0c;能够勾勒出来的矩形的最大面积。 这道题暴力很简单&#xff0c;但是时间复杂度是O(N^2)&#xf…...

网络工程师 (8)存储管理

一、页式存储基本原理 &#xff08;一&#xff09;内存划分 页式存储首先将内存物理空间划分成大小相等的存储块&#xff0c;这些块通常被称为“页帧”或“物理页”。每个页帧的大小是固定的&#xff0c;例如常见的页帧大小有4KB、8KB等&#xff0c;这个大小由操作系统决定。同…...

【Leetcode 每日一题】541. 反转字符串 II

问题背景 给定一个字符串 s s s 和一个整数 k k k&#xff0c;从字符串开头算起&#xff0c;每计数至 2 k 2k 2k 个字符&#xff0c;就反转这 2 k 2k 2k 字符中的前 k k k 个字符。 如果剩余字符少于 k k k 个&#xff0c;则将剩余字符全部反转。如果剩余字符小于 2 k…...

MSA Transformer

过去的蛋白质语言模型以单个序列为输入&#xff0c;MSA Transformer以多序列比对的形式将一组序列作为输入。该模型将行和列注意力交织在输入序列中&#xff0c;并在许多蛋白质家族中使用mask语言建模目标进行训练。模型的性能远超过了当时最先进的无监督学习方法&#xff0c;其…...

Vue.js组件开发-实现全屏焦点图片带图标导航按钮控制图片滑动切换

使用 Vue 实现全屏焦点图片带图标导航按钮控制图片滑动切换 步骤 创建 Vue 项目&#xff1a;可以使用 Vue CLI 快速创建一个新的 Vue 项目。设计组件结构&#xff1a;创建一个包含图片展示区域和导航按钮的组件。实现图片滑动切换逻辑&#xff1a;通过点击导航按钮切换图片。…...

Linux系统上安装与配置 MySQL( CentOS 7 )

目录 1. 下载并安装 MySQL 官方 Yum Repository 2. 启动 MySQL 并查看运行状态 3. 找到 root 用户的初始密码 4. 修改 root 用户密码 5. 设置允许远程登录 6. 在云服务器配置 MySQL 端口 7. 关闭防火墙 8. 解决密码错误的问题 前言 在 Linux 服务器上安装并配置 MySQL …...

Ubuntu系统下交叉编译openssl

一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机&#xff1a;Ubuntu 20.04.6 LTSHost&#xff1a;ARM32位交叉编译器&#xff1a;arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...

使用VSCode开发Django指南

使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架&#xff0c;专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用&#xff0c;其中包含三个使用通用基本模板的页面。在此…...

docker详细操作--未完待续

docker介绍 docker官网: Docker&#xff1a;加速容器应用程序开发 harbor官网&#xff1a;Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台&#xff0c;用于将应用程序及其依赖项&#xff08;如库、运行时环…...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

Docker 运行 Kafka 带 SASL 认证教程

Docker 运行 Kafka 带 SASL 认证教程 Docker 运行 Kafka 带 SASL 认证教程一、说明二、环境准备三、编写 Docker Compose 和 jaas文件docker-compose.yml代码说明&#xff1a;server_jaas.conf 四、启动服务五、验证服务六、连接kafka服务七、总结 Docker 运行 Kafka 带 SASL 认…...

可靠性+灵活性:电力载波技术在楼宇自控中的核心价值

可靠性灵活性&#xff1a;电力载波技术在楼宇自控中的核心价值 在智能楼宇的自动化控制中&#xff0c;电力载波技术&#xff08;PLC&#xff09;凭借其独特的优势&#xff0c;正成为构建高效、稳定、灵活系统的核心解决方案。它利用现有电力线路传输数据&#xff0c;无需额外布…...

【JVM】- 内存结构

引言 JVM&#xff1a;Java Virtual Machine 定义&#xff1a;Java虚拟机&#xff0c;Java二进制字节码的运行环境好处&#xff1a; 一次编写&#xff0c;到处运行自动内存管理&#xff0c;垃圾回收的功能数组下标越界检查&#xff08;会抛异常&#xff0c;不会覆盖到其他代码…...

MODBUS TCP转CANopen 技术赋能高效协同作业

在现代工业自动化领域&#xff0c;MODBUS TCP和CANopen两种通讯协议因其稳定性和高效性被广泛应用于各种设备和系统中。而随着科技的不断进步&#xff0c;这两种通讯协议也正在被逐步融合&#xff0c;形成了一种新型的通讯方式——开疆智能MODBUS TCP转CANopen网关KJ-TCPC-CANP…...

如何为服务器生成TLS证书

TLS&#xff08;Transport Layer Security&#xff09;证书是确保网络通信安全的重要手段&#xff0c;它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书&#xff0c;可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...