当前位置: 首页 > news >正文

ROS应用之IMU碰撞检测与接触事件识别

前言

碰撞检测与接触事件识别是机器人与环境交互中的重要任务,尤其是在复杂的动态环境中。IMU(惯性测量单元)作为一种高频率、低延迟的传感器,因其能够检测加速度、角速度等动态变化而成为实现碰撞检测的核心手段之一。结合先进的算法模型和信号处理技术,IMU能够有效地识别碰撞事件和接触特征。

本文将围绕IMU碰撞检测与接触事件识别展开详细讲解,包括理论介绍、参数设计、部署环境、代码实现与解读、运行效果等内容。


原理介绍

基本概念
  1. IMU信号特征

    • IMU提供三轴加速度(ax,ay,az)和三轴角速度(ωx,ωy,ωz)。

    • 在碰撞或接触事件发生时,IMU的加速度信号会出现瞬态跃变,而角速度信号可能显示出明显的波动。

  2. 碰撞与接触的定义

    • 碰撞:通常指机器人与物体发生快速、短暂且高能量的接触。

    • 接触:通常指持续时间较长、能量较小的相互作用,例如机器人手臂抓取物体。

  3. IMU碰撞检测的核心思路

    • 加速度变化率检测:通过对加速度信号求导,识别快速变化点。

    • 加速度阈值检测:利用预设阈值判断是否发生高能量碰撞。

    • 频域特征分析:通过FFT提取信号频率成分,区分碰撞与普通运动。

  4. 接触事件识别的核心思路

    • 信号平稳性分析:通过窗口内加速度方差或功率谱密度变化,判断是否进入接触状态。

    • 特定频率成分提取:识别特定接触类型(如摩擦或振动)对应的频率范围。


整体流程
  1. IMU数据预处理

    • 滤波去噪(例如低通滤波消除高频干扰)。

    • 数据归一化。

  2. 特征提取

    • 时域特征:加速度绝对值、加速度变化率、信号均值和标准差。

    • 频域特征:FFT频谱、功率谱密度。

  3. 碰撞检测

    • 阈值法:基于加速度阈值。

    • 模型法:使用机器学习或深度学习模型区分碰撞信号。

  4. 接触事件识别

    • 利用时频域特征,通过模式识别区分接触类型。

  5. 触发事件输出

    • 触发报警或记录接触事件信息。


关键特点
  1. 高灵敏度与实时性

    • IMU的高采样率(如100Hz或更高)保证了对快速变化的碰撞事件的实时响应。

  2. 低成本与广泛适用性

    • IMU模块价格低廉,适用于各种机器人系统,包括移动机器人、机械臂和无人机等。

  3. 多模式支持

    • 能够检测多种碰撞强度和接触类型。

  4. 算法复杂性可调

    • 从简单的阈值方法到复杂的机器学习模型都可以实现。


算法流程

以下是IMU碰撞检测与接触事件识别的详细算法流程:

  1. 数据采集

    • 从IMU中读取三轴加速度和角速度数据。

    • 采样频率为fs,信号记为:

  2. 信号预处理

    • 去除重力影响:

      图2.png

    • 其中agravity为静态重力分量。

    • 低通滤波:

      图3.png

    • 采用Butterworth滤波器,截止频率为5-10Hz。

  3. 特征提取

    • 加速度绝对值:

      图4.png

    • 碰撞特征:

      图5.png

  4. 碰撞检测

    • 阈值法:

      图6.png

    • 模型法:使用支持向量机(SVM)或神经网络,输入特征向量进行分类。

  5. 接触事件识别

    • 短时傅里叶变换(STFT):

      图7.png

    • 提取特定频率能量,分析接触类型。

  6. 输出事件

    • 碰撞事件输出:碰撞强度和方向。

    • 接触事件输出:接触持续时间和接触类型。


部署环境介绍

  • 硬件需求

点击三木地带你手搓ROS应用之IMU碰撞检测与接触事件识别查看全文。

相关文章:

ROS应用之IMU碰撞检测与接触事件识别

前言 碰撞检测与接触事件识别是机器人与环境交互中的重要任务,尤其是在复杂的动态环境中。IMU(惯性测量单元)作为一种高频率、低延迟的传感器,因其能够检测加速度、角速度等动态变化而成为实现碰撞检测的核心手段之一。结合先进的…...

docker安装MySQL8:docker离线安装MySQL、docker在线安装MySQL、MySQL镜像下载、MySQL配置、MySQL命令

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull mysql:8.0.41 2、离线包下载 两种方式: 方式一: -)在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -)导出 # 导出镜…...

android安卓用Rime

之前 [1] 在 iOS 配置用上自改方案 [2],现想在安卓也用上。Rime 主页推荐了两个安卓平台支持 rime 的输入法 [3]: 同文 Tongwen Rime Input Method Editor,但在我的 Realme X2 Pro 上似乎有 bug:弹出的虚拟键盘只有几个 switcher…...

每日一博 - 三高系统架构设计:高性能、高并发、高可用性解析

文章目录 引言一、高性能篇1.1 高性能的核心意义 1.2 影响系统性能的因素1.3 高性能优化方法论1.3.1 读优化:缓存与数据库的结合1.3.2 写优化:异步化处理 1.4 高性能优化实践1.4.1 本地缓存 vs 分布式缓存1.4.2 数据库优化 二、高并发篇2.1 高并发的核心…...

C++ 中的引用(Reference)

在 C 中,引用(Reference)是一种特殊的变量类型,它提供了一个已存在变量的别名。引用在很多场景下都非常有用,比如函数参数传递、返回值等。下面将详细介绍 C 引用的相关知识。 1. 引用的基本概念和语法 引用是已存在…...

负荷预测算法模型

1. 时间序列分析方法 时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而&#xff…...

【C语言】内存管理

【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中&#xff0c;内存是通过…...

deepseek大模型本机部署

2024年1月20日晚&#xff0c;中国DeepSeek发布了最新推理模型DeepSeek-R1&#xff0c;引发广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美&#xff0c;更以开源和创新训练方法&#xff0c;为AI发展带来了新的可能性。 本文讲解如何在本地部署deepseek r1模型。deepseek官…...

动态规划DP 最长上升子序列模型 拦截导弹(题目分析+C++完整代码)

概览检索 动态规划DP 最长上升子序列模型 拦截导弹 原题链接 AcWiing 1010. 拦截导弹 题目描述 某国为了防御敌国的导弹袭击&#xff0c;发展出一种导弹拦截系统。 但是这种导弹拦截系统有一个缺陷&#xff1a;虽然它的第一发炮弹能够到达任意的高度&#xff0c;但是以后每…...

缩位求和——蓝桥杯

1.题目描述 在电子计算机普及以前&#xff0c;人们经常用一个粗略的方法来验算四则运算是否正确。 比如&#xff1a;248153720248153720 把乘数和被乘数分别逐位求和&#xff0c;如果是多位数再逐位求和&#xff0c;直到是 1 位数&#xff0c;得 24814>145 156 56 而…...

Baklib赋能企业实现高效数字化内容管理提升竞争力

内容概要 在数字经济的浪潮下&#xff0c;企业面临着前所未有的机遇与挑战。随着信息技术的迅猛发展&#xff0c;各行业都在加速推进数字化转型&#xff0c;以保持竞争力。在这个过程中&#xff0c;数字化内容管理成为不可或缺的一环。高效的内容管理不仅能够优化内部流程&…...

【视频+图文讲解】HTML基础2-html骨架与基本语法

图文教程 基本骨架 举个例子&#xff0c;下图所展示的为html的源代码 -!DOCTYPE&#xff1a;表示文档类型&#xff08;后边写的html表示文档类型是html&#xff09;&#xff1b;其中“&#xff01;”表示声明 只要是加这个声明标签的&#xff0c;浏览器就会把下边的源代码当…...

消息队列篇--原理篇--常见消息队列总结(RabbitMQ,Kafka,ActiveMQ,RocketMQ,Pulsar)

1、RabbitMQ 特点&#xff1a; AMQP协议&#xff1a;RabbitMQ是基于AMQP&#xff08;高级消息队列协议&#xff09;构建的&#xff0c;支持多种消息传递模式&#xff0c;如发布/订阅、路由、RPC等。多语言支持&#xff1a;支持多种编程语言的客户端库&#xff0c;包括Java、P…...

【力扣每日一题】存在重复元素 II 解题思路

219. 存在重复元素 II 解题思路 问题描述 给定一个整数数组 nums 和一个整数 k&#xff0c;要求判断数组中是否存在两个 不同的索引 i 和 j&#xff0c;使得&#xff1a; nums[i] nums[j]且满足 abs(i - j) < k 如果满足上述条件&#xff0c;返回 true&#xff0c;否则…...

React第二十八章(css modules)

css modules 什么是 css modules 因为 React 没有Vue的Scoped&#xff0c;但是React又是SPA(单页面应用)&#xff0c;所以需要一种方式来解决css的样式冲突问题&#xff0c;也就是把每个组件的样式做成单独的作用域&#xff0c;实现样式隔离&#xff0c;而css modules就是一种…...

本地运行大模型效果及配置展示

电脑上用ollama安装了qwen2.5:32b&#xff0c;deepseek-r1:32b&#xff0c;deepseek-r1:14b&#xff0c;llama3.1:8b四个模型&#xff0c;都是Q4_K_M量化版。 运行过程中主要是cpu和内存负载比较大&#xff0c;qwen2.5:32b大概需要22g&#xff0c;deepseek-r1&#xff1a;32b类…...

愿景:做机器视觉行业的颠覆者

一个愿景&#xff0c;两场战斗&#xff0c;专注制胜。 一个愿景&#xff1a;做机器视觉行业的颠覆者。 我给自己创业&#xff0c;立一个大的愿景&#xff1a;做机器视觉行业的颠覆者。 两场战斗&#xff1a;无监督-大模型 上半场&#xff0c;无监督。2025-2030&#xff0c;共五…...

arm-linux-gnueabihf安装

Linaro Releases windows下打开wsl2中的ubuntu&#xff0c;资源管理器中输入&#xff1a; \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录&#xff1a; /usr/local/arm&#xff0c;命令如下&#xff1a; …...

力扣动态规划-16【算法学习day.110】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;建议灵神的题单和代码随想录&#xff09;和记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关…...

Java基础知识总结(三十四)--java.util.Date

月份从0-11&#xff1b; /* 日期对象和毫秒值之间的转换。 1&#xff0c;日期对象转成毫秒值。Date类中的getTime方法。 2&#xff0c;如何将获取到的毫秒值转成具体的日期呢&#xff1f; Date类中的setTime方法。也可以通过构造方法。 */ //日期对象转成毫秒值 Date …...

(LeetCode 每日一题) 3442. 奇偶频次间的最大差值 I (哈希、字符串)

题目&#xff1a;3442. 奇偶频次间的最大差值 I 思路 &#xff1a;哈希&#xff0c;时间复杂度0(n)。 用哈希表来记录每个字符串中字符的分布情况&#xff0c;哈希表这里用数组即可实现。 C版本&#xff1a; class Solution { public:int maxDifference(string s) {int a[26]…...

多云管理“拦路虎”:深入解析网络互联、身份同步与成本可视化的技术复杂度​

一、引言&#xff1a;多云环境的技术复杂性本质​​ 企业采用多云策略已从技术选型升维至生存刚需。当业务系统分散部署在多个云平台时&#xff0c;​​基础设施的技术债呈现指数级积累​​。网络连接、身份认证、成本管理这三大核心挑战相互嵌套&#xff1a;跨云网络构建数据…...

基于大模型的 UI 自动化系统

基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

visual studio 2022更改主题为深色

visual studio 2022更改主题为深色 点击visual studio 上方的 工具-> 选项 在选项窗口中&#xff0c;选择 环境 -> 常规 &#xff0c;将其中的颜色主题改成深色 点击确定&#xff0c;更改完成...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

[ICLR 2022]How Much Can CLIP Benefit Vision-and-Language Tasks?

论文网址&#xff1a;pdf 英文是纯手打的&#xff01;论文原文的summarizing and paraphrasing。可能会出现难以避免的拼写错误和语法错误&#xff0c;若有发现欢迎评论指正&#xff01;文章偏向于笔记&#xff0c;谨慎食用 目录 1. 心得 2. 论文逐段精读 2.1. Abstract 2…...

CMake 从 GitHub 下载第三方库并使用

有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

Java多线程实现之Thread类深度解析

Java多线程实现之Thread类深度解析 一、多线程基础概念1.1 什么是线程1.2 多线程的优势1.3 Java多线程模型 二、Thread类的基本结构与构造函数2.1 Thread类的继承关系2.2 构造函数 三、创建和启动线程3.1 继承Thread类创建线程3.2 实现Runnable接口创建线程 四、Thread类的核心…...

docker 部署发现spring.profiles.active 问题

报错&#xff1a; org.springframework.boot.context.config.InvalidConfigDataPropertyException: Property spring.profiles.active imported from location class path resource [application-test.yml] is invalid in a profile specific resource [origin: class path re…...