当前位置: 首页 > news >正文

ROS应用之IMU碰撞检测与接触事件识别

前言

碰撞检测与接触事件识别是机器人与环境交互中的重要任务,尤其是在复杂的动态环境中。IMU(惯性测量单元)作为一种高频率、低延迟的传感器,因其能够检测加速度、角速度等动态变化而成为实现碰撞检测的核心手段之一。结合先进的算法模型和信号处理技术,IMU能够有效地识别碰撞事件和接触特征。

本文将围绕IMU碰撞检测与接触事件识别展开详细讲解,包括理论介绍、参数设计、部署环境、代码实现与解读、运行效果等内容。


原理介绍

基本概念
  1. IMU信号特征

    • IMU提供三轴加速度(ax,ay,az)和三轴角速度(ωx,ωy,ωz)。

    • 在碰撞或接触事件发生时,IMU的加速度信号会出现瞬态跃变,而角速度信号可能显示出明显的波动。

  2. 碰撞与接触的定义

    • 碰撞:通常指机器人与物体发生快速、短暂且高能量的接触。

    • 接触:通常指持续时间较长、能量较小的相互作用,例如机器人手臂抓取物体。

  3. IMU碰撞检测的核心思路

    • 加速度变化率检测:通过对加速度信号求导,识别快速变化点。

    • 加速度阈值检测:利用预设阈值判断是否发生高能量碰撞。

    • 频域特征分析:通过FFT提取信号频率成分,区分碰撞与普通运动。

  4. 接触事件识别的核心思路

    • 信号平稳性分析:通过窗口内加速度方差或功率谱密度变化,判断是否进入接触状态。

    • 特定频率成分提取:识别特定接触类型(如摩擦或振动)对应的频率范围。


整体流程
  1. IMU数据预处理

    • 滤波去噪(例如低通滤波消除高频干扰)。

    • 数据归一化。

  2. 特征提取

    • 时域特征:加速度绝对值、加速度变化率、信号均值和标准差。

    • 频域特征:FFT频谱、功率谱密度。

  3. 碰撞检测

    • 阈值法:基于加速度阈值。

    • 模型法:使用机器学习或深度学习模型区分碰撞信号。

  4. 接触事件识别

    • 利用时频域特征,通过模式识别区分接触类型。

  5. 触发事件输出

    • 触发报警或记录接触事件信息。


关键特点
  1. 高灵敏度与实时性

    • IMU的高采样率(如100Hz或更高)保证了对快速变化的碰撞事件的实时响应。

  2. 低成本与广泛适用性

    • IMU模块价格低廉,适用于各种机器人系统,包括移动机器人、机械臂和无人机等。

  3. 多模式支持

    • 能够检测多种碰撞强度和接触类型。

  4. 算法复杂性可调

    • 从简单的阈值方法到复杂的机器学习模型都可以实现。


算法流程

以下是IMU碰撞检测与接触事件识别的详细算法流程:

  1. 数据采集

    • 从IMU中读取三轴加速度和角速度数据。

    • 采样频率为fs,信号记为:

  2. 信号预处理

    • 去除重力影响:

      图2.png

    • 其中agravity为静态重力分量。

    • 低通滤波:

      图3.png

    • 采用Butterworth滤波器,截止频率为5-10Hz。

  3. 特征提取

    • 加速度绝对值:

      图4.png

    • 碰撞特征:

      图5.png

  4. 碰撞检测

    • 阈值法:

      图6.png

    • 模型法:使用支持向量机(SVM)或神经网络,输入特征向量进行分类。

  5. 接触事件识别

    • 短时傅里叶变换(STFT):

      图7.png

    • 提取特定频率能量,分析接触类型。

  6. 输出事件

    • 碰撞事件输出:碰撞强度和方向。

    • 接触事件输出:接触持续时间和接触类型。


部署环境介绍

  • 硬件需求

点击三木地带你手搓ROS应用之IMU碰撞检测与接触事件识别查看全文。

相关文章:

ROS应用之IMU碰撞检测与接触事件识别

前言 碰撞检测与接触事件识别是机器人与环境交互中的重要任务,尤其是在复杂的动态环境中。IMU(惯性测量单元)作为一种高频率、低延迟的传感器,因其能够检测加速度、角速度等动态变化而成为实现碰撞检测的核心手段之一。结合先进的…...

docker安装MySQL8:docker离线安装MySQL、docker在线安装MySQL、MySQL镜像下载、MySQL配置、MySQL命令

一、镜像下载 1、在线下载 在一台能连外网的linux上执行docker镜像拉取命令 docker pull mysql:8.0.41 2、离线包下载 两种方式: 方式一: -)在一台能连外网的linux上安装docker执行第一步的命令下载镜像 -)导出 # 导出镜…...

android安卓用Rime

之前 [1] 在 iOS 配置用上自改方案 [2],现想在安卓也用上。Rime 主页推荐了两个安卓平台支持 rime 的输入法 [3]: 同文 Tongwen Rime Input Method Editor,但在我的 Realme X2 Pro 上似乎有 bug:弹出的虚拟键盘只有几个 switcher…...

每日一博 - 三高系统架构设计:高性能、高并发、高可用性解析

文章目录 引言一、高性能篇1.1 高性能的核心意义 1.2 影响系统性能的因素1.3 高性能优化方法论1.3.1 读优化:缓存与数据库的结合1.3.2 写优化:异步化处理 1.4 高性能优化实践1.4.1 本地缓存 vs 分布式缓存1.4.2 数据库优化 二、高并发篇2.1 高并发的核心…...

C++ 中的引用(Reference)

在 C 中,引用(Reference)是一种特殊的变量类型,它提供了一个已存在变量的别名。引用在很多场景下都非常有用,比如函数参数传递、返回值等。下面将详细介绍 C 引用的相关知识。 1. 引用的基本概念和语法 引用是已存在…...

负荷预测算法模型

1. 时间序列分析方法 时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而&#xff…...

【C语言】内存管理

【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中&#xff0c;内存是通过…...

deepseek大模型本机部署

2024年1月20日晚&#xff0c;中国DeepSeek发布了最新推理模型DeepSeek-R1&#xff0c;引发广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美&#xff0c;更以开源和创新训练方法&#xff0c;为AI发展带来了新的可能性。 本文讲解如何在本地部署deepseek r1模型。deepseek官…...

动态规划DP 最长上升子序列模型 拦截导弹(题目分析+C++完整代码)

概览检索 动态规划DP 最长上升子序列模型 拦截导弹 原题链接 AcWiing 1010. 拦截导弹 题目描述 某国为了防御敌国的导弹袭击&#xff0c;发展出一种导弹拦截系统。 但是这种导弹拦截系统有一个缺陷&#xff1a;虽然它的第一发炮弹能够到达任意的高度&#xff0c;但是以后每…...

缩位求和——蓝桥杯

1.题目描述 在电子计算机普及以前&#xff0c;人们经常用一个粗略的方法来验算四则运算是否正确。 比如&#xff1a;248153720248153720 把乘数和被乘数分别逐位求和&#xff0c;如果是多位数再逐位求和&#xff0c;直到是 1 位数&#xff0c;得 24814>145 156 56 而…...

Baklib赋能企业实现高效数字化内容管理提升竞争力

内容概要 在数字经济的浪潮下&#xff0c;企业面临着前所未有的机遇与挑战。随着信息技术的迅猛发展&#xff0c;各行业都在加速推进数字化转型&#xff0c;以保持竞争力。在这个过程中&#xff0c;数字化内容管理成为不可或缺的一环。高效的内容管理不仅能够优化内部流程&…...

【视频+图文讲解】HTML基础2-html骨架与基本语法

图文教程 基本骨架 举个例子&#xff0c;下图所展示的为html的源代码 -!DOCTYPE&#xff1a;表示文档类型&#xff08;后边写的html表示文档类型是html&#xff09;&#xff1b;其中“&#xff01;”表示声明 只要是加这个声明标签的&#xff0c;浏览器就会把下边的源代码当…...

消息队列篇--原理篇--常见消息队列总结(RabbitMQ,Kafka,ActiveMQ,RocketMQ,Pulsar)

1、RabbitMQ 特点&#xff1a; AMQP协议&#xff1a;RabbitMQ是基于AMQP&#xff08;高级消息队列协议&#xff09;构建的&#xff0c;支持多种消息传递模式&#xff0c;如发布/订阅、路由、RPC等。多语言支持&#xff1a;支持多种编程语言的客户端库&#xff0c;包括Java、P…...

【力扣每日一题】存在重复元素 II 解题思路

219. 存在重复元素 II 解题思路 问题描述 给定一个整数数组 nums 和一个整数 k&#xff0c;要求判断数组中是否存在两个 不同的索引 i 和 j&#xff0c;使得&#xff1a; nums[i] nums[j]且满足 abs(i - j) < k 如果满足上述条件&#xff0c;返回 true&#xff0c;否则…...

React第二十八章(css modules)

css modules 什么是 css modules 因为 React 没有Vue的Scoped&#xff0c;但是React又是SPA(单页面应用)&#xff0c;所以需要一种方式来解决css的样式冲突问题&#xff0c;也就是把每个组件的样式做成单独的作用域&#xff0c;实现样式隔离&#xff0c;而css modules就是一种…...

本地运行大模型效果及配置展示

电脑上用ollama安装了qwen2.5:32b&#xff0c;deepseek-r1:32b&#xff0c;deepseek-r1:14b&#xff0c;llama3.1:8b四个模型&#xff0c;都是Q4_K_M量化版。 运行过程中主要是cpu和内存负载比较大&#xff0c;qwen2.5:32b大概需要22g&#xff0c;deepseek-r1&#xff1a;32b类…...

愿景:做机器视觉行业的颠覆者

一个愿景&#xff0c;两场战斗&#xff0c;专注制胜。 一个愿景&#xff1a;做机器视觉行业的颠覆者。 我给自己创业&#xff0c;立一个大的愿景&#xff1a;做机器视觉行业的颠覆者。 两场战斗&#xff1a;无监督-大模型 上半场&#xff0c;无监督。2025-2030&#xff0c;共五…...

arm-linux-gnueabihf安装

Linaro Releases windows下打开wsl2中的ubuntu&#xff0c;资源管理器中输入&#xff1a; \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录&#xff1a; /usr/local/arm&#xff0c;命令如下&#xff1a; …...

力扣动态规划-16【算法学习day.110】

前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向&#xff08;例如想要掌握基础用法&#xff0c;该刷哪些题&#xff1f;建议灵神的题单和代码随想录&#xff09;和记录自己的学习过程&#xff0c;我的解析也不会做的非常详细&#xff0c;只会提供思路和一些关…...

Java基础知识总结(三十四)--java.util.Date

月份从0-11&#xff1b; /* 日期对象和毫秒值之间的转换。 1&#xff0c;日期对象转成毫秒值。Date类中的getTime方法。 2&#xff0c;如何将获取到的毫秒值转成具体的日期呢&#xff1f; Date类中的setTime方法。也可以通过构造方法。 */ //日期对象转成毫秒值 Date …...

第19节 Node.js Express 框架

Express 是一个为Node.js设计的web开发框架&#xff0c;它基于nodejs平台。 Express 简介 Express是一个简洁而灵活的node.js Web应用框架, 提供了一系列强大特性帮助你创建各种Web应用&#xff0c;和丰富的HTTP工具。 使用Express可以快速地搭建一个完整功能的网站。 Expre…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

Linux 文件类型,目录与路径,文件与目录管理

文件类型 后面的字符表示文件类型标志 普通文件&#xff1a;-&#xff08;纯文本文件&#xff0c;二进制文件&#xff0c;数据格式文件&#xff09; 如文本文件、图片、程序文件等。 目录文件&#xff1a;d&#xff08;directory&#xff09; 用来存放其他文件或子目录。 设备…...

Psychopy音频的使用

Psychopy音频的使用 本文主要解决以下问题&#xff1a; 指定音频引擎与设备&#xff1b;播放音频文件 本文所使用的环境&#xff1a; Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...

LeetCode - 199. 二叉树的右视图

题目 199. 二叉树的右视图 - 力扣&#xff08;LeetCode&#xff09; 思路 右视图是指从树的右侧看&#xff0c;对于每一层&#xff0c;只能看到该层最右边的节点。实现思路是&#xff1a; 使用深度优先搜索(DFS)按照"根-右-左"的顺序遍历树记录每个节点的深度对于…...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

安宝特案例丨Vuzix AR智能眼镜集成专业软件,助力卢森堡医院药房转型,赢得辉瑞创新奖

在Vuzix M400 AR智能眼镜的助力下&#xff0c;卢森堡罗伯特舒曼医院&#xff08;the Robert Schuman Hospitals, HRS&#xff09;凭借在无菌制剂生产流程中引入增强现实技术&#xff08;AR&#xff09;创新项目&#xff0c;荣获了2024年6月7日由卢森堡医院药剂师协会&#xff0…...

基于IDIG-GAN的小样本电机轴承故障诊断

目录 🔍 核心问题 一、IDIG-GAN模型原理 1. 整体架构 2. 核心创新点 (1) ​梯度归一化(Gradient Normalization)​​ (2) ​判别器梯度间隙正则化(Discriminator Gradient Gap Regularization)​​ (3) ​自注意力机制(Self-Attention)​​ 3. 完整损失函数 二…...

轻量级Docker管理工具Docker Switchboard

简介 什么是 Docker Switchboard &#xff1f; Docker Switchboard 是一个轻量级的 Web 应用程序&#xff0c;用于管理 Docker 容器。它提供了一个干净、用户友好的界面来启动、停止和监控主机上运行的容器&#xff0c;使其成为本地开发、家庭实验室或小型服务器设置的理想选择…...