负荷预测算法模型
1. 时间序列分析方法
时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而,它们对原始数据的平稳性要求较高,并且未能充分考虑到天气等外部因素的影响。
- ARIMA (AutoRegressive Integrated Moving Average):适用于单变量时间序列数据的预测,能够捕捉数据的趋势和季节性。
- SARIMA (Seasonal ARIMA):在ARIMA的基础上添加了对季节性因素的建模,适合于具有明显季节性变化的电力负荷预测。
- VAR (Vector Autoregression):用于多变量电力负荷预测,能分析变量间的相互关系和影响。
2. 机器学习模型
随着机器学习技术的发展,越来越多的算法被应用于负荷预测领域。这些模型可以从大量数据中自动提取特征,并通过训练得到良好的预测性能。
- 支持向量机(SVM):最初主要用于数据分类,由于其处理非线性数据的能力,也被应用于负荷预测问题。
- 随机森林:这是一种集成学习方法,通过构建多个决策树并汇总它们的结果来进行预测,能够有效处理非线性关系和大规模数据集。
- XGBoost 和 Lasso:这两种方法都是用于回归任务的高级算法,能够在保持高精度的同时减少过拟合的风险。
3. 深度学习模型
深度学习模型因其强大的表示能力和处理复杂模式的能力,在负荷预测中得到了广泛应用。
- 人工神经网络(ANN):由于其非线性映射能力和柔性网络结构,成为应用最广泛的人工智能模型之一。
- 长短期记忆网络(LSTM):专门设计用来处理长期依赖问题,特别适合于时间序列数据的预测。
- 卷积神经网络(CNN):虽然最初是为图像处理而设计的,但也可以应用于电力负荷预测,尤其是当数据可以像图像一样被表示时。
- 双向长短期记忆网络(Bi-LSTM):结合K-Means聚类和Transformer模型,提高了电力负荷预测的精度和鲁棒性。
选择合适的负荷预测算法模型需要综合考虑多种因素,包括但不限于数据特性、预测周期、计算资源限制以及对预测准确性的要求。对于短期预测来说,LSTM和Bi-LSTM等深度学习模型可能提供更高的精度,但对于数据量较小或计算资源有限的情况,传统的ARIMA或SARIMA可能是更合适的选择。此外,结合多种模型的混合方法也逐渐受到关注,旨在通过整合不同模型的优点来提高预测性能。总之,随着技术的进步,负荷预测的精确性和可靠性将持续提升,从而更好地服务于电力系统的规划和运营。
相关文章:
负荷预测算法模型
1. 时间序列分析方法 时间序列分析方法是最早被用来进行电力负荷预测的方法之一,它基于历史数据来构建数学模型,以描述时间与负荷值之间的关系。这种方法通常只考虑时间变量,不需要大量的输入数据,因此计算速度快。然而ÿ…...
【C语言】内存管理
【C语言】内存管理 文章目录 【C语言】内存管理1.概念2.库函数3.动态分配内存malloccalloc 4.重新调整内存的大小和释放内存reallocfree 1.概念 C 语言为内存的分配和管理提供了几个函数。这些函数可以在 <stdlib.h> 头文件中找到。 在 C 语言中,内存是通过…...
deepseek大模型本机部署
2024年1月20日晚,中国DeepSeek发布了最新推理模型DeepSeek-R1,引发广泛关注。这款模型不仅在性能上与OpenAI的GPT-4相媲美,更以开源和创新训练方法,为AI发展带来了新的可能性。 本文讲解如何在本地部署deepseek r1模型。deepseek官…...
动态规划DP 最长上升子序列模型 拦截导弹(题目分析+C++完整代码)
概览检索 动态规划DP 最长上升子序列模型 拦截导弹 原题链接 AcWiing 1010. 拦截导弹 题目描述 某国为了防御敌国的导弹袭击,发展出一种导弹拦截系统。 但是这种导弹拦截系统有一个缺陷:虽然它的第一发炮弹能够到达任意的高度,但是以后每…...
缩位求和——蓝桥杯
1.题目描述 在电子计算机普及以前,人们经常用一个粗略的方法来验算四则运算是否正确。 比如:248153720248153720 把乘数和被乘数分别逐位求和,如果是多位数再逐位求和,直到是 1 位数,得 24814>145 156 56 而…...
Baklib赋能企业实现高效数字化内容管理提升竞争力
内容概要 在数字经济的浪潮下,企业面临着前所未有的机遇与挑战。随着信息技术的迅猛发展,各行业都在加速推进数字化转型,以保持竞争力。在这个过程中,数字化内容管理成为不可或缺的一环。高效的内容管理不仅能够优化内部流程&…...
【视频+图文讲解】HTML基础2-html骨架与基本语法
图文教程 基本骨架 举个例子,下图所展示的为html的源代码 -!DOCTYPE:表示文档类型(后边写的html表示文档类型是html);其中“!”表示声明 只要是加这个声明标签的,浏览器就会把下边的源代码当…...
消息队列篇--原理篇--常见消息队列总结(RabbitMQ,Kafka,ActiveMQ,RocketMQ,Pulsar)
1、RabbitMQ 特点: AMQP协议:RabbitMQ是基于AMQP(高级消息队列协议)构建的,支持多种消息传递模式,如发布/订阅、路由、RPC等。多语言支持:支持多种编程语言的客户端库,包括Java、P…...
【力扣每日一题】存在重复元素 II 解题思路
219. 存在重复元素 II 解题思路 问题描述 给定一个整数数组 nums 和一个整数 k,要求判断数组中是否存在两个 不同的索引 i 和 j,使得: nums[i] nums[j]且满足 abs(i - j) < k 如果满足上述条件,返回 true,否则…...
React第二十八章(css modules)
css modules 什么是 css modules 因为 React 没有Vue的Scoped,但是React又是SPA(单页面应用),所以需要一种方式来解决css的样式冲突问题,也就是把每个组件的样式做成单独的作用域,实现样式隔离,而css modules就是一种…...
本地运行大模型效果及配置展示
电脑上用ollama安装了qwen2.5:32b,deepseek-r1:32b,deepseek-r1:14b,llama3.1:8b四个模型,都是Q4_K_M量化版。 运行过程中主要是cpu和内存负载比较大,qwen2.5:32b大概需要22g,deepseek-r1:32b类…...
愿景:做机器视觉行业的颠覆者
一个愿景,两场战斗,专注制胜。 一个愿景:做机器视觉行业的颠覆者。 我给自己创业,立一个大的愿景:做机器视觉行业的颠覆者。 两场战斗:无监督-大模型 上半场,无监督。2025-2030,共五…...
arm-linux-gnueabihf安装
Linaro Releases windows下打开wsl2中的ubuntu,资源管理器中输入: \\wsl$gcc-linaro-4.9.4-2017.01-x86_64_arm-linux-gnueabihf.tar.xz 复制到/home/ark01/tool 在 Ubuntu 中创建目录: /usr/local/arm,命令如下: …...
力扣动态规划-16【算法学习day.110】
前言 ###我做这类文章一个重要的目的还是给正在学习的大家提供方向(例如想要掌握基础用法,该刷哪些题?建议灵神的题单和代码随想录)和记录自己的学习过程,我的解析也不会做的非常详细,只会提供思路和一些关…...
Java基础知识总结(三十四)--java.util.Date
月份从0-11; /* 日期对象和毫秒值之间的转换。 1,日期对象转成毫秒值。Date类中的getTime方法。 2,如何将获取到的毫秒值转成具体的日期呢? Date类中的setTime方法。也可以通过构造方法。 */ //日期对象转成毫秒值 Date …...
零售EDI:Costco EDI 项目须知
Costco 是全球领先的会员制仓储式零售商,致力于为会员提供高品质且价格实惠的商品。其经营范围涵盖食品、电子产品、家居用品、服装和办公设备等多个领域。 Costco 的 EDI 对接需求分析 为了更高效地管理其复杂的全球供应链,Costco 采用了先进的 EDI&am…...
最近最少使用算法(LRU最近最少使用)缓存替换算法
含义 最近最少使用算法(LRU)是一种缓存替换算法,用于在缓存空间有限的情况下,选择最少使用的数据项进行替换。该算法的核心思想是基于时间局部性原理,即刚被访问的数据在未来也很有可能被再次访问。 实现 LRU算法的…...
sublime_text的快捷键
sublime_text的快捷键 向下复制, 复制光标所在整行并插入到下一行:通过 CtrlShiftD 实现快速复制当前行的功能。 可选多行, 不选则复制当前行 ctrl Shift D 删除当前行:通过 CtrlShiftK 实现快速删除当前行的功能。 可选多行, 不选则删当前行 ctrl S…...
使用Pygame制作“贪吃蛇”游戏
贪吃蛇 是一款经典的休闲小游戏:玩家通过操控一条会不断变长的“蛇”在屏幕中移动,去吃随机出现的食物,同时要避免撞到墙壁或自己身体的其他部分。由于其逻辑相对简单,但可玩性和扩展性都不错,非常适合作为新手练习游戏…...
本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操
本地部署DeepSeek开源多模态大模型Janus-Pro-7B实操 Janus-Pro-7B介绍 Janus-Pro-7B 是由 DeepSeek 开发的多模态 AI 模型,它在理解和生成方面取得了显著的进步。这意味着它不仅可以处理文本,还可以处理图像等其他模态的信息。 模型主要特点:Permalink…...
网络六边形受到攻击
大家读完觉得有帮助记得关注和点赞!!! 抽象 现代智能交通系统 (ITS) 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 (…...
JavaScript 中的 ES|QL:利用 Apache Arrow 工具
作者:来自 Elastic Jeffrey Rengifo 学习如何将 ES|QL 与 JavaScript 的 Apache Arrow 客户端工具一起使用。 想获得 Elastic 认证吗?了解下一期 Elasticsearch Engineer 培训的时间吧! Elasticsearch 拥有众多新功能,助你为自己…...
MongoDB学习和应用(高效的非关系型数据库)
一丶 MongoDB简介 对于社交类软件的功能,我们需要对它的功能特点进行分析: 数据量会随着用户数增大而增大读多写少价值较低非好友看不到其动态信息地理位置的查询… 针对以上特点进行分析各大存储工具: mysql:关系型数据库&am…...
PPT|230页| 制造集团企业供应链端到端的数字化解决方案:从需求到结算的全链路业务闭环构建
制造业采购供应链管理是企业运营的核心环节,供应链协同管理在供应链上下游企业之间建立紧密的合作关系,通过信息共享、资源整合、业务协同等方式,实现供应链的全面管理和优化,提高供应链的效率和透明度,降低供应链的成…...
(二)TensorRT-LLM | 模型导出(v0.20.0rc3)
0. 概述 上一节 对安装和使用有个基本介绍。根据这个 issue 的描述,后续 TensorRT-LLM 团队可能更专注于更新和维护 pytorch backend。但 tensorrt backend 作为先前一直开发的工作,其中包含了大量可以学习的地方。本文主要看看它导出模型的部分&#x…...
css的定位(position)详解:相对定位 绝对定位 固定定位
在 CSS 中,元素的定位通过 position 属性控制,共有 5 种定位模式:static(静态定位)、relative(相对定位)、absolute(绝对定位)、fixed(固定定位)和…...
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数
高效线程安全的单例模式:Python 中的懒加载与自定义初始化参数 在软件开发中,单例模式(Singleton Pattern)是一种常见的设计模式,确保一个类仅有一个实例,并提供一个全局访问点。在多线程环境下,实现单例模式时需要注意线程安全问题,以防止多个线程同时创建实例,导致…...
深入浅出深度学习基础:从感知机到全连接神经网络的核心原理与应用
文章目录 前言一、感知机 (Perceptron)1.1 基础介绍1.1.1 感知机是什么?1.1.2 感知机的工作原理 1.2 感知机的简单应用:基本逻辑门1.2.1 逻辑与 (Logic AND)1.2.2 逻辑或 (Logic OR)1.2.3 逻辑与非 (Logic NAND) 1.3 感知机的实现1.3.1 简单实现 (基于阈…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...
CSS | transition 和 transform的用处和区别
省流总结: transform用于变换/变形,transition是动画控制器 transform 用来对元素进行变形,常见的操作如下,它是立即生效的样式变形属性。 旋转 rotate(角度deg)、平移 translateX(像素px)、缩放 scale(倍数)、倾斜 skewX(角度…...
