Python 梯度下降法(五):Adam Optimize
文章目录
- Python 梯度下降法(五):Adam Optimize
- 一、数学原理
- 1.1 介绍
- 1.2 符号说明
- 1.3 实现流程
- 二、代码实现
- 2.1 函数代码
- 2.2 总代码
- 2.3 遇到的问题
- 2.4 算法优化
- 三、优缺点
- 3.1 优点
- 3.2 缺点
- 四、相关链接
Python 梯度下降法(五):Adam Optimize
一、数学原理
1.1 介绍
Adam 算法结合了 Adagrad 和 RMSProp 算法的优点。Adagrad 算法会根据每个参数的历史梯度信息来调整学习率,对于出现频率较低的参数会给予较大的学习率,而对于出现频率较高的参数则给予较小的学习率。RMSProp 算法则是对 Adagrad 算法的改进,它通过使用移动平均的方式来计算梯度的平方,从而避免了 Adagrad 算法中学习率单调下降的问题。
1.2 符号说明
参数 | 意义 |
---|---|
g t = ∇ θ J ( θ t ) g_{t}=\nabla_{\theta}J(\theta_{t}) gt=∇θJ(θt) | 第 t t t时刻的梯度 |
m t m_{t} mt | 梯度的一阶矩(均值) |
β 1 \beta_{1} β1 | 一阶矩衰减率,一般取0.9 |
v t v_{t} vt | 梯度的二阶矩(未中心化的方差) |
β 2 \beta_{2} β2 | 二阶矩衰减率,一般取0.99 |
θ \theta θ | 线性拟合参数 |
η \eta η | 学习率 |
ϵ \epsilon ϵ | 无穷小量,一般取 1 0 − 8 10^{-8} 10−8 |
1.3 实现流程
- 初始化: θ \theta θ、 η \eta η、 m 0 ⃗ = 0 \vec{m_{0}}=0 m0=0、 v 0 ⃗ = 0 \vec{v_{0}}=0 v0=0
- 计算梯度: g t = ∇ θ J ( θ t ) = 1 m X T L g_{t}=\nabla_{\theta}J(\theta_{t})=\frac{1}{m}X^{T}L gt=∇θJ(θt)=m1XTL
- 梯度的一阶矩估计(均值): m t = β 1 m t − 1 + ( 1 − β 1 ) g t m_{t}=\beta_{1}m_{t-1}+(1-\beta_{1})g_{t} mt=β1mt−1+(1−β1)gt
- 梯度的二阶矩估计(未中心化的方差): v t = β 2 v t − 1 + ( 1 − β 2 ) g t 2 v_{t}=\beta_{2}v_{t-1}+(1-\beta_{2})g_{t}^{2} vt=β2vt−1+(1−β2)gt2
- 偏差修正: m t ^ = m t 1 − β 1 t 、 v t ^ = v t 1 − β 2 t \hat{m_{t}}=\frac{m_{t}}{1-\beta_{1}^{t}}、\hat{v_{t}}=\frac{v_{t}}{1-\beta_{2}^{t}} mt^=1−β1tmt、vt^=1−β2tvt
- 更新参数: θ t = θ t − 1 − η m t ^ v t ^ + ϵ \theta_{t}=\theta_{t-1}-\frac{\eta \hat{m_{t}}}{\sqrt{ \hat{v_{t}} }+\epsilon} θt=θt−1−vt^+ϵηmt^
二、代码实现
2.1 函数代码
# 定义 Adam 函数
def adam_optimizer(X, y, eta, num_iter=1000, beta1=0.8, beta2=0.8, epsilon=1e-8, threshold=1e-8):"""X: 数据 x mxn,可以在传入数据之前进行数据的归一化y: 数据 y mx1eta: 学习率num_iter: 迭代次数beta: 衰减率epsilon: 无穷小threshold: 阈值"""m, n = X.shapetheta, mt, vt, loss_ = np.random.randn(n, 1), np.zeros((n, 1)), np.zeros((n, 1)), [] # 初始化数据for iter in range(num_iter):h = X.dot(theta)err = h - yloss_.append(np.mean((err ** 2) / 2))g = (1 / m ) * X.T.dot(err)# 一阶矩估计mt = beta1 * mt + (1 - beta1) * g# 二阶矩估计vt = beta2 * vt + (1 - beta2) * g ** 2# 偏差修正mt_ = mt / (1 - pow(beta1, (iter + 1))) # 得 + 1 不然在 iter = 0 时,分母为零vt_ = np.abs(vt / (1 - pow(beta2, (iter + 1))))# 更新参数theta = theta - (eta * mt_) / (np.sqrt(vt_) + epsilon)# 检查是否收敛if iter > 1 and abs(loss_[-1] - loss_[-2]) < threshold:print(f"Converged at iteration {iter + 1}")breakreturn theta.flatten(), loss_
2.2 总代码
import numpy as np
import matplotlib.pyplot as plt# 设置 matplotlib 支持中文
plt.rcParams['font.sans-serif'] = ['Microsoft YaHei']
plt.rcParams['axes.unicode_minus'] = False# 定义 Adam 函数
def adam_optimizer(X, y, eta, num_iter=1000, beta1=0.8, beta2=0.8, epsilon=1e-8, threshold=1e-8):"""X: 数据 x mxn,可以在传入数据之前进行数据的归一化y: 数据 y mx1eta: 学习率num_iter: 迭代次数beta: 衰减率epsilon: 无穷小threshold: 阈值"""m, n = X.shapetheta, mt, vt, loss_ = np.random.randn(n, 1), np.zeros((n, 1)), np.zeros((n, 1)), [] # 初始化数据for iter in range(num_iter):h = X.dot(theta)err = h - yloss_.append(np.mean((err ** 2) / 2))g = (1 / m ) * X.T.dot(err)# 一阶矩估计mt = beta1 * mt + (1 - beta1) * g# 二阶矩估计vt = beta2 * vt + (1 - beta2) * g ** 2# 偏差修正mt_ = mt / (1 - pow(beta1, (iter + 1))) # 得 + 1 不然在 iter = 0 时,分母为零vt_ = np.abs(vt / (1 - pow(beta2, (iter + 1))))# 更新参数theta = theta - (eta * mt_) / (np.sqrt(vt_) + epsilon)# 检查是否收敛if iter > 1 and abs(loss_[-1] - loss_[-2]) < threshold:print(f"Converged at iteration {iter + 1}")breakreturn theta.flatten(), loss_# 生成一些示例数据
np.random.seed(42)
X = 2 * np.random.rand(100, 1)
y = 4 + 3 * X + np.random.randn(100, 1)
# 添加偏置项
X_b = np.c_[np.ones((100, 1)), X]# 超参数
eta = 0.01# 运行 Adam 优化器
theta, loss_ = adam_optimizer(X_b, y, eta)print("最优参数 theta:")
print(theta)# 绘制损失函数图像
plt.plot(range(len(loss_)), loss_, label="损失函数图像")
plt.title("损失函数图像")
plt.xlabel("迭代次数")
plt.ylabel("损失值")
plt.legend() # 显示图例
plt.grid(True) # 显示网格线
plt.show()
2.3 遇到的问题
当偏差修正为以下算法时,出现报错:
# 偏差修正mt_ = mt / (1 - pow(beta1, (iter)))vt_ = np.abs(vt / (1 - pow(beta2, (iter))))
进行检验时,我们发现:
mt_,vt_ \text{mt\_,vt\_} mt_,vt_为无穷量,因此考虑分母为零的情况,而当 iter = 0 \text{iter}=0 iter=0时, 1 − β iter = 0 1- \beta^{\text{iter}}=0 1−βiter=0,故说明索引不能从0开始,而应该从1开始,因此引入 iter + 1 \text{iter}+1 iter+1,防止分母的无穷大引入。
2.4 算法优化
由于算法过程中,如果数据量太多会引起资源的严重浪费,因此我们引入小批量梯度下降法的类似方法,批量截取数据来进行拟合。
# 定义 Adam 函数
def adam_optimizer(X, y, eta, num_iter=1000, batch_size=32, beta1=0.8, beta2=0.8, epsilon=1e-8, threshold=1e-8):"""X: 数据 x mxn,可以在传入数据之前进行数据的归一化y: 数据 y mx1eta: 学习率num_iter: 迭代次数batch_size: 小批量分支法的批量数beta: 衰减率epsilon: 无穷小threshold: 阈值"""m, n = X.shapetheta, mt, vt, loss_ = np.random.randn(n, 1), np.zeros((n, 1)), np.zeros((n, 1)), [] # 初始化数据num_batchs = m // batch_sizefor _ in range(num_iter):range_shuffle = np.random.permutation(m)X_shuffled = X[range_shuffle]y_shuffled = y[range_shuffle]loss_temp = []for iter in range(num_batchs):start_index = batch_size * iterend_index = start_index + batch_sizexi = X_shuffled[start_index:end_index]yi = y_shuffled[start_index:end_index]h = xi.dot(theta)err = h - yiloss_temp.append(np.mean((err ** 2) / 2))g = (1 / m ) * xi.T.dot(err)# 一阶矩估计mt = beta1 * mt + (1 - beta1) * g# 二阶矩估计vt = beta2 * vt + (1 - beta2) * g ** 2# 偏差修正mt_ = mt / (1 - pow(beta1, (iter + 1)))vt_ = np.abs(vt / (1 - pow(beta2, (iter + 1))))# 更新参数theta = theta - (eta * mt_) / (np.sqrt(vt_) + epsilon)loss_.append(np.mean(loss_temp))# 检查是否收敛if _ > 1 and abs(loss_[-1] - loss_[-2]) < threshold:print(f"Converged at iteration {iter + 1}")breakreturn theta.flatten(), loss_
使用小批量进行Adam优化,可以大大节省系统的资源。
三、优缺点
3.1 优点
对不同参数调整学习率:Adam 能够为模型的每个参数自适应地调整学习率。它会根据参数的梯度历史信息,对出现频率较低的参数给予较大的学习率,对出现频率较高的参数给予较小的学习率。这使得模型在训练过程中能够更好地处理不同尺度和变化频率的参数,加速收敛过程。
无需手动精细调整:在很多情况下,Adam 算法提供的默认超参数就能取得不错的效果,不需要像传统优化算法那样进行大量的手动调参,节省了时间和精力。
低内存需求:Adam 只需要存储梯度的一阶矩估计(均值)和二阶矩估计(未中心化的方差),不需要像一些二阶优化方法那样存储复杂的海森矩阵(Hessian matrix),因此内存占用相对较小,适合处理大规模数据集和深度神经网络。
快速收敛:通过结合梯度的一阶矩和二阶矩信息,Adam 能够更准确地估计梯度的方向和大小,从而在大多数情况下比传统的随机梯度下降(SGD)算法更快地收敛到最优解。
利用稀疏信息:在处理稀疏数据(如自然语言处理中的词向量)时,Adam 能够根据数据的稀疏性调整学习率。对于那些很少出现的特征,算法会给予较大的学习率,使得模型能够更有效地学习这些特征,避免因数据稀疏而导致的学习困难
偏差修正机制:Adam 算法引入了偏差修正机制,用于修正一阶矩和二阶矩估计在训练初期的偏差。这使得算法在训练的早期阶段更加稳定,能够避免因初始估计不准确而导致的训练波动或不收敛问题。
3.2 缺点
自适应特性的局限性:虽然 Adam 能够自适应地调整学习率,但在某些情况下,这种自适应特性可能会导致算法陷入局部最优解。由于学习率会随着训练过程自动调整,可能会在接近局部最优解时过早地降低学习率,使得算法难以跳出局部最优区域,从而无法找到全局最优解。
需要一定的调参经验:尽管 Adam 提供了默认的超参数,但在某些复杂的任务或数据集上,这些默认参数可能不是最优的。例如, β \beta β、 ϵ \epsilon ϵ的取值会影响算法的性能,如果选择不当,可能会导致收敛速度变慢、模型性能下降等问题。因此,在实际应用中,可能仍然需要进行一定的超参数调优。
过度适应训练数据:由于 Adam 算法在训练过程中过于关注梯度的历史信息和自适应调整学习率,可能会导致模型过度适应训练数据,从而降低模型的泛化能力。在某些情况下,使用 Adam 训练的模型在测试集上的表现可能不如使用其他优化算法训练的模型。
四、相关链接
Python 梯度下降法合集:
- Python 梯度下降法(一):Gradient Descent-CSDN博客
- Python 梯度下降法(二):RMSProp Optimize-CSDN博客
- Python 梯度下降法(三):Adagrad Optimize-CSDN博客
- Python 梯度下降法(四):Adadelta Optimize-CSDN博客
- Python 梯度下降法(五):Adam Optimize-CSDN博客
- Python 梯度下降法(六):Nadam Optimize-CSDN博客
- Python 梯度下降法(七):Summary-CSDN博客
相关文章:

Python 梯度下降法(五):Adam Optimize
文章目录 Python 梯度下降法(五):Adam Optimize一、数学原理1.1 介绍1.2 符号说明1.3 实现流程 二、代码实现2.1 函数代码2.2 总代码2.3 遇到的问题2.4 算法优化 三、优缺点3.1 优点3.2 缺点 四、相关链接 Python 梯度下降法(五&a…...
笔试-二进制
应用题 将符合区间[l,r]内的十进制整数转换为二进制表示,请问不包含“101”的整数个数是多少? 实现 l int(input("请输入下限l,其值大于等于1:")) r int(input("请输入上限r,其值大于等于l&#x…...
springboot 2.7.6 security mysql redis jwt配置例子
数据库结构用的是若依的数据库基本结构,ruoyi.vip。 总体参考了文章:https://blog.csdn.net/qq_45847507/article/details/126681110 本文章只包含不同的地方,相同的不再赘述。 1、创建spring工程,jdk1.8,maven。 pom.xml中依赖部…...

FreeRTOS从入门到精通 第十六章(任务通知)
参考教程:【正点原子】手把手教你学FreeRTOS实时系统_哔哩哔哩_bilibili 一、任务通知简介 1、概述 (1)任务通知顾名思义是用来通知任务的,任务控制块中的结构体成员变量ulNotifiedValue就是这个通知值。 (2&#…...

TensorFlow 简单的二分类神经网络的训练和应用流程
展示了一个简单的二分类神经网络的训练和应用流程。主要步骤包括: 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与部署 加载和应用已训练的模型 1. 数据准备与预处理 在本例中,数据准备是通过两个 Numpy 数…...

无人机图传模块 wfb-ng openipc-fpv,4G
openipc 的定位是为各种模块提供底层的驱动和linux最小系统,openipc 是采用buildroot系统编译而成,因此二次开发能力有点麻烦。为啥openipc 会用于无人机图传呢?因为openipc可以将现有的网络摄像头ip-camera模块直接利用起来,从而…...
.cc扩展名是什么语言?C语言必须用.c为扩展名吗?主流编程语言扩展名?Java为什么不能用全数字的文件名?
.cc扩展名是什么语言? .cc是C语言使用的扩展名,一种说法是它是c with class的简写,当然C语言使用的扩展名不止.cc和.cpp, 还包含.cxx, .c, .C等,这些在不同编译器系统采用的默认设定不同,需要区分使用。当然,编译器提…...

【MyDB】4-VersionManager 之 3-死锁及超时检测
【MyDB】4-VersionManager 之 3-死锁及超时检测 死锁及超时检测案例背景LockTable锁请求与等待管理 addvm调用addputIntoList,isInList,removeFromList 死锁检测 hasDeadLock方法资源释放与重分配 参考资料 死锁及超时检测 本章涉及代码:top/…...

【Linux】使用管道实现一个简易版本的进程池
文章目录 使用管道实现一个简易版本的进程池流程图代码makefileTask.hppProcessPool.cc 程序流程: 使用管道实现一个简易版本的进程池 流程图 代码 makefile ProcessPool:ProcessPool.ccg -o $ $^ -g -stdc11 .PHONY:clean clean:rm -f ProcessPoolTask.hpp #pr…...
【OpenGL】OpenGL游戏案例(二)
文章目录 特殊效果数据结构生成逻辑更新逻辑 文本渲染类结构构造函数加载函数渲染函数 特殊效果 为提高游戏的趣味性,在游戏中提供了六种特殊效果。 数据结构 PowerUp 类只存储存活数据,实际逻辑在游戏代码中通过Type字段来区分执行 class PowerUp …...
28. 【.NET 8 实战--孢子记账--从单体到微服务】--简易报表--报表定时器与报表数据修正
这篇文章是《.NET 8 实战–孢子记账–从单体到微服务》系列专栏的《单体应用》专栏的最后一片和开发有关的文章。在这片文章中我们一起来实现一个数据统计的功能:报表数据汇总。这个功能为用户查看月度、年度、季度报表提供数据支持。 一、需求 数据统计方面&…...
Java 泛型<? extends Object>
在 Java 泛型中,<? extends Object> 和 <?> 都表示未知类型,但它们在某些情况下有细微的差异。泛型的引入是为了消除运行时错误并增强类型安全性,使代码更具可读性和可维护性。 在 JDK 5 中引入了泛型,以消除编译时…...

FPGA|使用quartus II通过AS下载POF固件
1、将开发板设置到AS下载挡位,或者把下载线插入到AS端口 2、打开quartus II,选择Tools→Programmer→ Mode选择Active Serial Programming 3、点击左侧Add file…,选择 .pof 文件 →start 4、勾选program和verify(可选࿰…...

“新月之智”智能战术头盔系统(CITHS)
新月人物传记:人物传记之新月篇-CSDN博客 相关文章链接(更新): 星际战争模拟系统:新月的编程之道-CSDN博客 新月智能护甲系统CMIA--未来战场的守护者-CSDN博客 目录 一、引言 二、智能头盔控制系统概述 三、系统架…...
php:代码中怎么搭建一个类似linux系统的crontab服务
一、前言 最近使用自己搭建的php框架写一些东西,需要用到异步脚本任务的执行,但是是因为自己搭建的框架没有现成的机制,所以想自己搭建一个类似linux系统的crontab服务的功能。 因为如果直接使用linux crontab的服务配置起来很麻烦࿰…...

【LeetCode: 958. 二叉树的完全性检验 + bfs + 二叉树】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
MinDoc 安装与部署
下载可执行文件 mindoc mindoc_linux_amd64.zip 上传并解压压缩包 cd /opt mkdir mindoc cd mindocunzip mindoc_linux_amd64.zip 创建数据库 CREATE DATABASE mindoc_db DEFAULT CHARSET utf8mb4 COLLATE utf8mb4_general_ci; 配置数据库 将解压目录下 conf/app.conf.exam…...
从0开始使用面对对象C语言搭建一个基于OLED的图形显示框架(基础组件实现)
目录 基础组件实现 如何将图像和文字显示到OLED上 如何绘制图像 如何绘制文字 如何获取字体? 如何正确的访问字体 如何抽象字体 如何绘制字符串 绘制方案 文本绘制 更加方便的绘制 字体附录 ascii 6x8字体 ascii 8 x 16字体 基础组件实现 我们现在离手…...
windows系统如何检查是否开启了mongodb服务
windows系统如何检查是否开启了mongodb服务!我们有很多软件开发,网站开发时候需要使用到这个mongodb数据库,下面我们看看,如何在windows系统内排查,是否已经启动了本地服务。 在 Windows 系统上,您可以通过…...

VS安卓仿真器下载失败怎么办?
如果网络不稳定,则VS的安卓仿真器很容易下载失败,如下 Downloaded file <USER_HOME>\AppData\Local\Temp\xamarin-android-sdk\x86_64-35_r08.zip not found for Android SDK archive https://dl.google.com/android/repository/sys-img/google_a…...

如何在看板中体现优先级变化
在看板中有效体现优先级变化的关键措施包括:采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中,设置任务排序规则尤其重要,因为它让看板视觉上直观地体…...
Auto-Coder使用GPT-4o完成:在用TabPFN这个模型构建一个预测未来3天涨跌的分类任务
通过akshare库,获取股票数据,并生成TabPFN这个模型 可以识别、处理的格式,写一个完整的预处理示例,并构建一个预测未来 3 天股价涨跌的分类任务 用TabPFN这个模型构建一个预测未来 3 天股价涨跌的分类任务,进行预测并输…...

【单片机期末】单片机系统设计
主要内容:系统状态机,系统时基,系统需求分析,系统构建,系统状态流图 一、题目要求 二、绘制系统状态流图 题目:根据上述描述绘制系统状态流图,注明状态转移条件及方向。 三、利用定时器产生时…...
unix/linux,sudo,其发展历程详细时间线、由来、历史背景
sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...
GitHub 趋势日报 (2025年06月08日)
📊 由 TrendForge 系统生成 | 🌐 https://trendforge.devlive.org/ 🌐 本日报中的项目描述已自动翻译为中文 📈 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

VM虚拟机网络配置(ubuntu24桥接模式):配置静态IP
编辑-虚拟网络编辑器-更改设置 选择桥接模式,然后找到相应的网卡(可以查看自己本机的网络连接) windows连接的网络点击查看属性 编辑虚拟机设置更改网络配置,选择刚才配置的桥接模式 静态ip设置: 我用的ubuntu24桌…...
WebRTC从入门到实践 - 零基础教程
WebRTC从入门到实践 - 零基础教程 目录 WebRTC简介 基础概念 工作原理 开发环境搭建 基础实践 三个实战案例 常见问题解答 1. WebRTC简介 1.1 什么是WebRTC? WebRTC(Web Real-Time Communication)是一个支持网页浏览器进行实时语音…...

WPF八大法则:告别模态窗口卡顿
⚙️ 核心问题:阻塞式模态窗口的缺陷 原始代码中ShowDialog()会阻塞UI线程,导致后续逻辑无法执行: var result modalWindow.ShowDialog(); // 线程阻塞 ProcessResult(result); // 必须等待窗口关闭根本问题:…...
SQL Server 触发器调用存储过程实现发送 HTTP 请求
文章目录 需求分析解决第 1 步:前置条件,启用 OLE 自动化方式 1:使用 SQL 实现启用 OLE 自动化方式 2:Sql Server 2005启动OLE自动化方式 3:Sql Server 2008启动OLE自动化第 2 步:创建存储过程第 3 步:创建触发器扩展 - 如何调试?第 1 步:登录 SQL Server 2008第 2 步…...

mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...