使用Ollama本地化部署DeepSeek
1、Ollama 简介
Ollama 是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与 OpenAI 兼容的 API 接口,适合开发者和企业快速搭建私有化 AI 服务。
Ollama 的主要特点包括:
- 轻量化部署:支持在本地设备上运行模型,无需依赖云端服务。
- 多模型支持:兼容多种开源模型,如 LLaMA、DeepSeek 等。
- 高效管理:提供命令行工具,方便用户下载、加载和切换模型。
- 跨平台支持:支持 Windows、macOS 和 Linux 系统。

2、DeepSeek-R1 简介
DeepSeek-R1 是由深度求索(DeepSeek)公司开发的高性能 AI 推理模型,专注于数学、代码和自然语言推理任务。其核心优势包括:
- 强化学习驱动:通过强化学习技术显著提升推理能力,仅需少量标注数据即可高效训练。
- 长链推理(CoT):支持多步骤逻辑推理,能够逐步分解复杂问题并解决。
- 模型蒸馏:支持将推理能力迁移到更小型的模型中,适合资源有限的场景。
- 开源生态:遵循 MIT 开源协议,允许用户自由使用、修改和商用。
DeepSeek-R1 在多个基准测试中表现优异,性能对标 OpenAI 的 o1 正式版,同时具有更高的性价比。

3、使用 Ollama 部署 DeepSeek-R1
3.1、安装 Ollama
下载 Ollama: 访问 Ollama 官网,根据操作系统(Windows、macOS 或 Linux)下载安装包,并按照说明进行安装。
- 官网:https://ollama.com/
- Github:https://github.com/ollama/ollama
验证安装:在终端中运行以下命令验证安装:
ollama --version
如果安装成功,命令行会显示 Ollama 的版本信息。
admin@Mac-miniM4 ~ % ollama --version
ollama version is 0.5.7
3.2、下载 DeepSeek-R1 模型
Ollama已支持DeepSeek-R1, 模型地址:deepseek-r1 。

下载模型:
根据自己的显存选择对应的模型,macmini m4 16g 可流畅支持 7b。
使用以下命令下载 DeepSeek-R1 模型:
ollama pull deepseek-r1:1.5b
查看模型信息:
下载完成后,可以使用以下命令查看模型信息:
ollama list
该命令会显示已下载的模型列表,包括名称、大小和路径等。
运行 DeepSeek-R1:
使用以下命令启动 DeepSeek-R1 模型:
ollama run deepseek-r1:1.5b
该命令会启动 DeepSeek-R1 模型,并启动一个 REPL(交互式终端),你可以在这里输入问题,模型会根据问题生成回答。
admin@Mac-miniM4 ~ % ollama run deepseek-r1:1.5b
>>> 你好,介绍一下你自己
<think>
您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所
能为您提供帮助。
</think>您好!我是由中国的深度求索(DeepSeek)公司开发的智能助手DeepSeek-R1。如您有任何任何问题,我会尽我所
能为您提供帮助。
4、部署 Open-WebUI 增强交互体验
Ollama与Open WebUI结合,可以提供更丰富的交互体验。 可选择任意支持Ollama的webUI,如 AnythingLLM、Dify、Open-WebUI 等。
- AnythingLLM:更专注于文档知识库与问答场景,自带向量检索管理,可“多文档整合”,接入 Ollama 后实现本地化问答。
- Dify:功能多元,适合对话流管理、插件化扩展、团队协同等复杂需求。只要能在其后台正确配置 Ollama 地址,即可灵活调用。
- Open-WebUI:定位纯聊天界面,支持多模型集成,你可以把它当做一个能“轻松切换模型、马上对话”的 Web 面板,如果只是想单纯体验 Ollama 的生成效果,Open-WebUI 是最方便的。
本文场景比较简单,选择与Ollama结合比较紧密的open-webui。
- Open-WebUI:https://github.com/open-webui/open-webui
- 官方文档:https://docs.openwebui.com/getting-started/quick-start/
下载 Open-WebUI:
本地使用 docker 部署Open-WebUI,使用以下命令下载 Open-WebUI:
docker pull ghcr.io/open-webui/open-webui:main
启动 Open-WebUI:
// 创建本地目录,避免重启后数据丢失
mkdir /Users/admin/program/docker/instance/open-webui/data
cd /Users/admin/program/docker/instance/open-webui// 启动容器
docker run -d -p 3000:8080 -v $PWD/data:/app/backend/data --name open-webui ghcr.io/open-webui/open-webui:main
启动成功后,可在终端中查看容器状态,通过浏览器访问Open-WebUI:http://localhost:3000
配置 Ollama 地址:
浏览器进入 Open-WebUI 后,点击右上角的设置图标 进入设置页面。在“模型”选项卡中,点击“添加模型”,选择“Ollama”,并输入 Ollama 的地址(默认为 http://localhost:11434)。
测试功能:
在 Open-WebUI 中,你可以选择使用 Ollama 的不同模型,新建对话并体验不同的功能。例如:
- 智能客服:输入“如何安装Ollama?”。
- 内容创作:输入“为DeepSeek写一篇入门指南”。
- 编程辅助:输入“用 Java 实现快速排序”。
- 教育辅助:输入“解释牛顿第二定律”。

相关文章:
使用Ollama本地化部署DeepSeek
1、Ollama 简介 Ollama 是一个开源的本地化大模型部署工具,旨在简化大型语言模型(LLM)的安装、运行和管理。它支持多种模型架构,并提供与 OpenAI 兼容的 API 接口,适合开发者和企业快速搭建私有化 AI 服务。 Ollama …...
蓝桥杯刷题DAY1:前缀和
所谓刷题,讲究的就是细心 帕鲁服务器崩坏【算法赛】 “那个帕鲁我已经观察你很久了,我对你是有些失望的,进了这个营地,不是把事情做好就可以的,你需要有体系化思考的能力。” 《幻兽帕鲁》火遍全网,成为…...
【基于SprintBoot+Mybatis+Mysql】电脑商城项目之用户注册
🧸安清h:个人主页 🎥个人专栏:【计算机网络】【Mybatis篇】 🚦作者简介:一个有趣爱睡觉的intp,期待和更多人分享自己所学知识的真诚大学生。 目录 🎯项目基本介绍 🚦项…...
MINIRAG: TOWARDS EXTREMELY SIMPLE RETRIEVAL-AUGMENTED GENERATION论文翻译
感谢阅读 注意不含评估以后的翻译原论文地址标题以及摘要介绍部分MiniRAG 框架2.1 HETEROGENEOUS GRAPH INDEXING WITH SMALL LANGUAGE MODELS2.2 LIGHTWEIGHT GRAPH-BASED KNOWLEDGE RETRIEVAL2.2.1 QUERY SEMANTIC MAPPING2.2.2 TOPOLOGY-ENHANCED GRAPH RETRIEVAL 注意不含评…...
微服务入门(go)
微服务入门(go) 和单体服务对比:里面的服务仅仅用于某个特定的业务 一、领域驱动设计(DDD) 基本概念 领域和子域 领域:有范围的界限(边界) 子域:划分的小范围 核心域…...
Baklib揭示内容中台实施最佳实践的策略与实战经验
内容概要 在当前数字化转型的浪潮中,内容中台的概念日益受到关注。它不再仅仅是一个内容管理系统,而是企业提升运营效率与灵活应对市场变化的重要支撑平台。内容中台的实施离不开最佳实践的指导,这些实践为企业在建设高效内容中台时提供了宝…...
C++11新特性之lambda表达式
1.介绍 C11引入了lambda表达式。lambda表达式提供一种简洁的方式来定义匿名函数对象,使得在需要临时定义一个函数时非常方便。 2.lambda表达式用法 lambda表达式的基本用法为: [捕获列表](参数列表)->返回类型 { 函数体 …...
洛谷 P10289 [GESP样题 八级] 小杨的旅游 C++ 完整题解
一、题目链接 P10289 [GESP样题 八级] 小杨的旅游 - 洛谷 二、题目大意 n个节点之间有n - 1条边,其中k个节点是传送门,任意两个传送门之间可以 以0单位地时间相互到达。问从u到v至少需要多少时间? 三、解题思路 输入不必多讲。 cin >> …...
使用 Tauri 2 + Next.js 开发跨平台桌面应用实践:Singbox GUI 实践
Singbox GUI 实践 最近用 Tauri Next.js 做了个项目 - Singbox GUI,是个给 sing-box 用的图形界面工具。支持 Windows、Linux 和 macOS。作为第一次接触这两个框架的新手,感觉收获还蛮多的,今天来分享下开发过程中的一些经验~ 为啥要做这个…...
JWT入门
一、初识JWT:新时代的身份认证方案 在分布式系统成为主流的今天,传统的Session认证方式逐渐显露出局限性。JWT(JSON Web Token)作为现代Web开发的认证新标准,凭借其无状态、跨域友好和安全性等特性,正在成为…...
Python - Quantstats量化投资策略绩效统计包 - 详解
使用Quantstats包做量化投资绩效统计的时候因为Pandas、Quantstats版本不匹配踩了一些坑;另外,Quantstats中的绩效统计指标非常全面,因此详细记录一下BUG修复方法、使用说明以及部分指标的内涵示意。 一、Quantstats安装及版本匹配问题 可以…...
智慧园区管理系统推动企业智能运维与资源优化的全新路径分析
内容概要 在当今快速发展的商业环境中,园区管理的数字化转型显得尤为重要。在这个背景下,快鲸智慧园区管理系统应运而生,成为企业实现高效管理的最佳选择。它通过整合互联网、物联网等先进技术,以智能化的方式解决了传统管理模式…...
【数据结构-字典树】力扣14. 最长公共前缀
编写一个函数来查找字符串数组中的最长公共前缀。 如果不存在公共前缀,返回空字符串 “”。 示例 1: 输入:strs [“flower”,“flow”,“flight”] 输出:“fl” 示例 2: 输入:strs [“dog”,“racecar…...
《深入浅出HTTPS》读书笔记(31):HTTPS和TLS/SSL
《深入浅出HTTPS》读书笔记(31):HTTPS和TLS/SSL TLS/SSL协议和应用层协议无关,它只是加密应用层协议(比如HTTP)并传递给下层的TCP。 HTTP和TLS/SSL协议组合在一起就是HTTPS, HTTPS等…...
Go学习:Go语言中if、switch、for语句与其他编程语言中相应语句的格式区别
Go语言中的流程控制语句逻辑结构与其他编程语言类似,格式有些不同。Go语言的流程控制中,包括if、switch、for、range、goto等语句,没有while循环。 目录 1. if 语句 2. switch语句 3. for语句 4. range语句 5. goto语句(不常用…...
L30.【LeetCode笔记】设计链表
1.题目 707. 设计链表 - 力扣(LeetCode) 你可以选择使用单链表或者双链表,设计并实现自己的链表。 单链表中的节点应该具备两个属性:val 和 next 。val 是当前节点的值,next 是指向下一个节点的指针/引用。 如果是双向…...
java日志框架详解-Log4j2
一、概述 Apache Log4j 2 (Log4j – Apache Log4j 2)是对Log4j的升级,它比其前身Log4j 1.x提供了重大改进,并参考了Logback中优秀的设计,同时修复了Logback架构中的一些问题。被誉为是目前最优秀的Java日志框架&#x…...
C++中vector追加vector
在C中,如果你想将一个vector追加到另一个vector的后面,可以使用std::vector的成员函数insert或者std::copy,或者简单地使用std::vector的push_back方法逐个元素添加。这里我将展示几种常用的方法: 方法1:使用insert方…...
加一(66)
66. 加一 - 力扣(LeetCode) 解法: class Solution { public:vector<int> plusOne(vector<int>& digits) {bool plus_one true;for (int i digits.size() - 1; i > 0; --i) {if (plus_one) {int tmp digits[i] 1;if …...
远程连接-简化登录
vscode通过ssh连接远程服务器免密登录(图文)_vscode ssh-CSDN博客...
Python|GIF 解析与构建(5):手搓截屏和帧率控制
目录 Python|GIF 解析与构建(5):手搓截屏和帧率控制 一、引言 二、技术实现:手搓截屏模块 2.1 核心原理 2.2 代码解析:ScreenshotData类 2.2.1 截图函数:capture_screen 三、技术实现&…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
Qt/C++开发监控GB28181系统/取流协议/同时支持udp/tcp被动/tcp主动
一、前言说明 在2011版本的gb28181协议中,拉取视频流只要求udp方式,从2016开始要求新增支持tcp被动和tcp主动两种方式,udp理论上会丢包的,所以实际使用过程可能会出现画面花屏的情况,而tcp肯定不丢包,起码…...
R语言AI模型部署方案:精准离线运行详解
R语言AI模型部署方案:精准离线运行详解 一、项目概述 本文将构建一个完整的R语言AI部署解决方案,实现鸢尾花分类模型的训练、保存、离线部署和预测功能。核心特点: 100%离线运行能力自包含环境依赖生产级错误处理跨平台兼容性模型版本管理# 文件结构说明 Iris_AI_Deployme…...
8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂
蛋白质结合剂(如抗体、抑制肽)在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上,高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术,但这类方法普遍面临资源消耗巨大、研发周期冗长…...
SpringBoot+uniapp 的 Champion 俱乐部微信小程序设计与实现,论文初版实现
摘要 本论文旨在设计并实现基于 SpringBoot 和 uniapp 的 Champion 俱乐部微信小程序,以满足俱乐部线上活动推广、会员管理、社交互动等需求。通过 SpringBoot 搭建后端服务,提供稳定高效的数据处理与业务逻辑支持;利用 uniapp 实现跨平台前…...
现代密码学 | 椭圆曲线密码学—附py代码
Elliptic Curve Cryptography 椭圆曲线密码学(ECC)是一种基于有限域上椭圆曲线数学特性的公钥加密技术。其核心原理涉及椭圆曲线的代数性质、离散对数问题以及有限域上的运算。 椭圆曲线密码学是多种数字签名算法的基础,例如椭圆曲线数字签…...
令牌桶 滑动窗口->限流 分布式信号量->限并发的原理 lua脚本分析介绍
文章目录 前言限流限制并发的实际理解限流令牌桶代码实现结果分析令牌桶lua的模拟实现原理总结: 滑动窗口代码实现结果分析lua脚本原理解析 限并发分布式信号量代码实现结果分析lua脚本实现原理 双注解去实现限流 并发结果分析: 实际业务去理解体会统一注…...
【开发技术】.Net使用FFmpeg视频特定帧上绘制内容
目录 一、目的 二、解决方案 2.1 什么是FFmpeg 2.2 FFmpeg主要功能 2.3 使用Xabe.FFmpeg调用FFmpeg功能 2.4 使用 FFmpeg 的 drawbox 滤镜来绘制 ROI 三、总结 一、目的 当前市场上有很多目标检测智能识别的相关算法,当前调用一个医疗行业的AI识别算法后返回…...
