pytorch生成对抗网络
人工智能例子汇总:AI常见的算法和例子-CSDN博客
生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器(Discriminator)。这两个网络通过对抗过程共同训练,从而使生成器能够生成越来越真实的假数据。
GAN的基本工作原理:
-
生成器(G):它的任务是生成与真实数据相似的假数据。生成器通常从一个随机噪声(例如,均匀分布或高斯分布的噪声)开始,经过多层神经网络的处理,输出伪造的数据样本。
-
判别器(D):它的任务是区分输入数据是来自真实数据分布,还是生成器伪造的假数据。判别器通常是一个二分类器,其输出是一个表示“真实”或“假”的概率值。
训练过程:
- 对抗过程:生成器和判别器相互博弈。生成器希望生成尽可能像真的数据,以骗过判别器;而判别器希望准确区分真假数据。最终,生成器会通过优化损失函数,使得生成的数据与真实数据尽可能相似,判别器的性能则被提升到一个极限,使得它不能再轻易地区分真假数据。
-
数学公式:
- 判别器的目标是最大化其输出的正确分类概率,即区分真假数据。
- 生成器的目标是最小化其输出的“假数据”被判定为假的概率。
常见的GAN变种:
- DCGAN(Deep Convolutional GAN):使用卷积神经网络(CNN)来增强生成器和判别器的表现。
- WGAN(Wasserstein GAN):引入了Wasserstein距离,改进了训练稳定性。
- CycleGAN:能够在没有成对样本的情况下进行图像到图像的转换,例如将马变成斑马。
以下是一个简化的PyTorch GAN实现的框架,生成一个语音的梅尔频谱(假设已经处理了音频并提取了梅尔频谱特征)
import torch
import torch.nn as nn
import torch.optim as optim
import torchaudio
import matplotlib.pyplot as plt# 生成器(Generator)
class Generator(nn.Module):def __init__(self, z_dim=100):super(Generator, self).__init__()self.fc = nn.Sequential(nn.Linear(z_dim, 128),nn.ReLU(),nn.Linear(128, 256),nn.ReLU(),nn.Linear(256, 512),nn.ReLU(),nn.Linear(512, 1024),nn.ReLU(),nn.Linear(1024, 80), # 80表示梅尔频谱的时间步(例如:80个梅尔频率)nn.Tanh() # 生成梅尔频谱,范围在[-1, 1]之间)def forward(self, z):return self.fc(z)# 判别器(Discriminator)
class Discriminator(nn.Module):def __init__(self):super(Discriminator, self).__init__()self.fc = nn.Sequential(nn.Linear(80, 512), # 输入为梅尔频谱的时间步nn.LeakyReLU(0.2),nn.Linear(512, 256),nn.LeakyReLU(0.2),nn.Linear(256, 1),nn.Sigmoid() # 输出判定是“真”还是“假”)def forward(self, x):return self.fc(x)# 初始化生成器和判别器
z_dim = 100
generator = Generator(z_dim)
discriminator = Discriminator()# 优化器
lr = 0.0002
g_optimizer = optim.Adam(generator.parameters(), lr=lr, betas=(0.5, 0.999))
d_optimizer = optim.Adam(discriminator.parameters(), lr=lr, betas=(0.5, 0.999))# 损失函数
criterion = nn.BCELoss()# 加载数据(假设已经提取了梅尔频谱特征,取一个示例)
def load_example_mel_spectrogram():# 假设这是一个真实梅尔频谱的示例,实际数据应从音频文件中提取mel = torch.rand((80)) # 生成一个假的梅尔频谱数据return mel.unsqueeze(0) # 扩展维度以适应网络# 训练GAN
num_epochs = 1000
for epoch in range(num_epochs):# 真实数据real_data = load_example_mel_spectrogram()real_labels = torch.ones(real_data.size(0), 1) # 标签为1表示真实数据# 假数据z = torch.randn(real_data.size(0), z_dim) # 随机噪声fake_data = generator(z)fake_labels = torch.zeros(real_data.size(0), 1) # 标签为0表示假数据# 训练判别器discriminator.zero_grad()real_loss = criterion(discriminator(real_data), real_labels)fake_loss = criterion(discriminator(fake_data.detach()), fake_labels)d_loss = (real_loss + fake_loss) / 2d_loss.backward()d_optimizer.step()# 训练生成器generator.zero_grad()g_loss = criterion(discriminator(fake_data), real_labels) # 生成器希望判别器判定为真实g_loss.backward()g_optimizer.step()if epoch % 100 == 0:print(f"Epoch [{epoch}/{num_epochs}], D Loss: {d_loss.item()}, G Loss: {g_loss.item()}")# 可视化生成的梅尔频谱(只显示最后一次生成的结果)if epoch == num_epochs - 1:plt.figure(figsize=(10, 4))plt.imshow(fake_data.detach().numpy(), aspect='auto', origin='lower')plt.title(f"Generated Mel Spectrogram - Epoch {epoch}")plt.colorbar()plt.show()# 测试阶段:使用训练好的生成器进行语音生成
z_test = torch.randn(1, z_dim) # 创建一个新的随机噪声向量
generated_mel_spectrogram = generator(z_test)# 可视化生成的梅尔频谱
plt.figure(figsize=(10, 4))
plt.imshow(generated_mel_spectrogram.detach().numpy(), aspect='auto', origin='lower')
plt.title("Generated Mel Spectrogram from Test Data")
plt.colorbar()
plt.show()
解释:
-
测试阶段:
- 在训练完成后,我们使用一个新的随机噪声向量
z_test
来生成一个新的梅尔频谱。 generated_mel_spectrogram = generator(z_test)
是生成梅尔频谱的过程。
- 在训练完成后,我们使用一个新的随机噪声向量
-
可视化:
- 使用
plt.imshow()
来可视化生成的梅尔频谱图,origin='lower'
是确保频谱图正确显示。 plt.colorbar()
添加颜色条,以便更清晰地理解梅尔频谱的数值范围。
- 使用
结果:
- 在训练过程中,你会看到每个epoch的损失值,并在最后一次epoch时显示生成的梅尔频谱。
- 在测试阶段,生成器会基于随机噪声生成一个新的梅尔频谱并进行可视化,帮助你观察最终模型生成的语音特征。
相关文章:

pytorch生成对抗网络
人工智能例子汇总:AI常见的算法和例子-CSDN博客 生成对抗网络(GAN,Generative Adversarial Network)是一种深度学习模型,由两个神经网络组成:生成器(Generator)和判别器࿰…...

Visual Studio Code应用本地部署的deepseek
1.打开Visual Studio Code,在插件中搜索continue,安装插件。 2.添加新的大语言模型,我们选择ollama. 3.直接点connect,会链接本地下载好的deepseek模型。 参看上篇文章:deepseek本地部署-CSDN博客 4.输入需求生成可用…...

用 HTML、CSS 和 JavaScript 实现抽奖转盘效果
顺序抽奖 前言 这段代码实现了一个简单的抽奖转盘效果。页面上有一个九宫格布局的抽奖区域,周围八个格子分别放置了不同的奖品名称,中间是一个 “开始抽奖” 的按钮。点击按钮后,抽奖区域的格子会快速滚动,颜色不断变化…...
Skewer v0.2.2安装与使用-生信工具43
01 Skewer 介绍 Skewer(来自于 SourceForge)实现了一种基于位掩码的 k-差异匹配算法,专门用于接头修剪,特别设计用于处理下一代测序(NGS)双端序列。 fastp安装及使用-fastp v0.23.4(bioinfoma…...
C语言:链表排序与插入的实现
好的!以下是一篇关于这段代码的博客文章: 从零开始:链表排序与插入的实现 在数据结构的学习中,链表是一种非常基础且重要的数据结构。今天,我们将通过一个简单的 C 语言程序,来探讨如何实现一个从小到大排序的链表,并在其中插入一个新的节点。这个过程不仅涉及链表的基…...
【Elasticsearch】doc_values 可以用于查询操作
确实,doc values 可以用于查询操作,尽管它们的主要用途是支持排序、聚合和脚本中的字段访问。在某些情况下,Elasticsearch 也会利用 doc values 来执行特定类型的查询。以下是关于 doc values 在查询操作中的使用及其影响的详细解释ÿ…...

深度学习深度解析:从基础到前沿
引言 深度学习作为人工智能的一个重要分支,通过模拟人脑的神经网络结构来进行数据分析和模式识别。它在图像识别、自然语言处理、语音识别等领域取得了显著成果。本文将深入探讨深度学习的基础知识、主要模型架构以及当前的研究热点和发展趋势。 基础概念与数学原理…...

JVM的GC详解
获取GC日志方式大抵有两种 第一种就是设定JVM参数在程序启动时查看,具体的命令参数为: -XX:PrintGCDetails # 打印GC日志 -XX:PrintGCTimeStamps # 打印每一次触发GC时发生的时间第二种则是在服务器上监控:使用jstat查看,如下所示,命令格式为jstat -gc…...

【开源免费】基于Vue和SpringBoot的校园网上店铺系统(附论文)
本文项目编号 T 187 ,文末自助获取源码 \color{red}{T187,文末自助获取源码} T187,文末自助获取源码 目录 一、系统介绍二、数据库设计三、配套教程3.1 启动教程3.2 讲解视频3.3 二次开发教程 四、功能截图五、文案资料5.1 选题背景5.2 国内…...

测压表压力表计量表针头针尾检测数据集VOC+YOLO格式4862张4类别
数据集格式:Pascal VOC格式YOLO格式(不包含分割路径的txt文件,仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数):4862 标注数量(xml文件个数):4862 标注数量(txt文件个数):4862 …...
Vue 3 30天精进之旅:Day 12 - 异步操作
在现代前端开发中,异步操作是一个非常常见的需求,例如从后端API获取数据、进行文件上传等任务。Vue 3 结合组合式API和Vuex可以方便地处理这些异步操作。今天我们将重点学习如何在Vue应用中进行异步操作,包括以下几个主题: 异步操…...

【网络】3.HTTP(讲解HTTP协议和写HTTP服务)
目录 1 认识URL1.1 URI的格式 2 HTTP协议2.1 请求报文2.2 响应报文 3 模拟HTTP3.1 Socket.hpp3.2 HttpServer.hpp3.2.1 start()3.2.2 ThreadRun()3.2.3 HandlerHttp() 总结 1 认识URL 什么是URI? URI 是 Uniform Resource Identifier的缩写&…...
[paddle] 矩阵相关的指标
行列式 det 行列式定义参考 d e t ( A ) ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) \sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)i1,i2,⋯,in…...

docker部署SpringBoot项目简单流程
一、docker基础命令理解学习 1、常见命令 docker启动之前要关闭防火墙systemctl stop firewalld # 关闭防火墙systemctl disable firewalld # 禁止开机启动防火墙systemctl start docker # 启动docker服务systemctl stop docker # 停止docker服务systemctl restart docker # …...
Python学习——函数参数详解
Python中的函数参数传递机制允许多种灵活的参数类型,可以根据需求灵活配置参数,这使得函数具有更强大的扩展性和适应性。以下是对各类参数类型的详细说明: 1. 定义函数的不同参数类型 1.1 位置参数 定义方式:def func(a, b2) 特…...

Chromium132 编译指南 - Android 篇(一):编译前准备
1. 引言 欢迎来到《Chromium 132 编译指南 - Android 篇》系列的第一部分。本系列指南将引导您逐步完成在 Android 平台上编译 Chromium 132 版本的全过程。Chromium 作为一款由 Google 主导开发的开源浏览器引擎,为众多现代浏览器提供了核心驱动力。而 Android 作…...
.Net / C# 繁体中文 与 简体中文 互相转换, 支持地方特色词汇
版本号 Nuget 搜索 “OpenCCNET”, 注意别找错, 好多库的名字都差不多 支持 “繁,简” 的互相转换, 支持多个地区常用词汇的转换, 还支持 日文的新旧转换. OpenCC 在 .Net 中的实现 https://github.com/CosineG/OpenCC.NET <PackageReference Include"OpenCCNET"…...
Java泛型深度解析(JDK23)
第一章 泛型革命 1.1 类型安全的进化史 前泛型时代的类型转换隐患 代码的血泪史(Java 1.4版示例): List rawList new ArrayList(); rawList.add("Java"); rawList.add(Integer.valueOf(42)); // 编译通过// 灾难在运行时爆发…...

【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)
✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:贪心算法篇–CSDN博客 文章目录 一.贪心算法1.什么是贪心算法2.贪心算法的特点 二.例题1.柠…...
AJAX XML
AJAX XML 引言 随着互联网技术的不断发展,Web应用对用户交互性和实时性的要求越来越高。AJAX(Asynchronous JavaScript and XML)技术的出现,为Web应用开发提供了强大的支持。AJAX技术允许Web应用在不重新加载整个页面的情况下,与服务器进行异步通信。XML作为数据传输格式…...
Vim 调用外部命令学习笔记
Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...
谷歌浏览器插件
项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...
uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖
在前面的练习中,每个页面需要使用ref,onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入,需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

vscode(仍待补充)
写于2025 6.9 主包将加入vscode这个更权威的圈子 vscode的基本使用 侧边栏 vscode还能连接ssh? debug时使用的launch文件 1.task.json {"tasks": [{"type": "cppbuild","label": "C/C: gcc.exe 生成活动文件"…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)
笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...
MySQL用户和授权
开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务: test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

OPenCV CUDA模块图像处理-----对图像执行 均值漂移滤波(Mean Shift Filtering)函数meanShiftFiltering()
操作系统:ubuntu22.04 OpenCV版本:OpenCV4.9 IDE:Visual Studio Code 编程语言:C11 算法描述 在 GPU 上对图像执行 均值漂移滤波(Mean Shift Filtering),用于图像分割或平滑处理。 该函数将输入图像中的…...

佰力博科技与您探讨热释电测量的几种方法
热释电的测量主要涉及热释电系数的测定,这是表征热释电材料性能的重要参数。热释电系数的测量方法主要包括静态法、动态法和积分电荷法。其中,积分电荷法最为常用,其原理是通过测量在电容器上积累的热释电电荷,从而确定热释电系数…...

push [特殊字符] present
push 🆚 present 前言present和dismiss特点代码演示 push和pop特点代码演示 前言 在 iOS 开发中,push 和 present 是两种不同的视图控制器切换方式,它们有着显著的区别。 present和dismiss 特点 在当前控制器上方新建视图层级需要手动调用…...