[paddle] 矩阵相关的指标
行列式 det
行列式定义参考
d e t ( A ) = ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) =\sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)=i1,i2,⋯,in∑(−1)σ(i1,⋯,in)a1,i1a2,i2,⋯,an,in
i 1 , ⋯ , i n i_1,\cdots,i_n i1,⋯,in 是 1 , ⋯ , n 1,\cdots,n 1,⋯,n 的排列.
参数
x (Tensor):输入一个或批量矩阵。x 的形状应为 [*, M, M],其中 * 为零或更大的批次维度,数据类型支持 float32、float64。
返回
Tensor,输出矩阵的行列式值 Shape 为 [*] 。
多个方阵的行列式
import paddle
paddle.seed(2023)
x = paddle.randn([4,3,3])
A = paddle.linalg.det(x)
print(A)
常用方阵的行列式:
import paddle
paddle.seed(2023)
x = paddle.randn([3,3])
A = paddle.linalg.det(x)
print(A)
矩阵的范数 norm
矩阵的算子范数
矩阵的算子范数(也称为矩阵范数或诱导范数)是衡量矩阵作为线性算子作用在向量上的“放大”程度的一种度量。算子范数依赖于向量范数的定义,常见的算子范数包括以下几种:
- 2-范数(谱范数):
矩阵的2-范数是矩阵最大奇异值或最大特征值的绝对值。对于矩阵 A A A ,2-范数定义为:
∥ A ∥ 2 = σ max ( A ) \|A\|_2 = \sigma_{\max}(A) ∥A∥2=σmax(A)
其中 σ max ( A ) \sigma_{\max}(A) σmax(A) 是矩阵 A A A 的最大奇异值。2-范数也是矩阵作为线性算子在欧几里得空间中最大“拉伸”效果的度量。 - 1-范数:
矩阵的1-范数是矩阵列向量1-范数的最大值。对于矩阵 A A A ,1-范数定义为:
∥ A ∥ 1 = max ∥ x ∥ 1 = 1 ∥ A x ∥ 1 \|A\|_1 = \max_{\|x\|_1 = 1} \|Ax\|_1 ∥A∥1=∥x∥1=1max∥Ax∥1
这实际上是矩阵列向量的绝对和的最大值。 - ∞ \infty ∞-范数(无穷范数):
矩阵的 ∞ \infty ∞-范数是矩阵行向量1-范数的最大值。对于矩阵 A A A , ∞ \infty ∞-范数定义为:
∥ A ∥ ∞ = max ∥ x ∥ ∞ = 1 ∥ A x ∥ ∞ \|A\|_{\infty} = \max_{\|x\|_{\infty} = 1} \|Ax\|_{\infty} ∥A∥∞=∥x∥∞=1max∥Ax∥∞
这实际上是矩阵行向量的绝对和的最大值。 - p-范数:
更一般地,可以定义矩阵的p-范数。对于矩阵 A A A ,p-范数定义为:
∥ A ∥ p = max ∥ x ∥ p = 1 ∥ A x ∥ p \|A\|_p = \max_{\|x\|_p = 1} \|Ax\|_p ∥A∥p=∥x∥p=1max∥Ax∥p
其中 p p p 是一个正实数。当 p = 2 p = 2 p=2 时,就是2-范数(谱范数)。
算子范数的性质:
- 正定性:对于任意矩阵 A A A,都有 ∥ A ∥ ≥ 0 \|A\| \geq 0 ∥A∥≥0,且 ∥ A ∥ = 0 \|A\| = 0 ∥A∥=0 当且仅当 A = 0 A = 0 A=0。
- 齐次性:对于任意矩阵 A A A 和标量 c c c,都有 ∥ c A ∥ = ∣ c ∣ ∥ A ∥ \|cA\| = |c| \|A\| ∥cA∥=∣c∣∥A∥。
- 三角不等式:对于任意矩阵 A A A 和 B B B,都有 ∥ A + B ∥ ≤ ∥ A ∥ + ∥ B ∥ \|A + B\| \leq \|A\| + \|B\| ∥A+B∥≤∥A∥+∥B∥。
- 相容性:对于任意矩阵 A A A 和 B B B,都有 ∥ A B ∥ ≤ ∥ A ∥ ∥ B ∥ \|AB\| \leq \|A\| \|B\| ∥AB∥≤∥A∥∥B∥。
矩阵的核范数
矩阵的核范数(Nuclear Norm)是矩阵理论中的一个重要概念,特别是在低秩矩阵恢复和压缩感知等领域。核范数是矩阵奇异值之和,它可以看作是矩阵的秩的一种凸近似。
对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其核范数定义为:
∥ A ∥ ∗ = ∑ i = 1 min ( m , n ) σ i ( A ) \|A\|_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A) ∥A∥∗=i=1∑min(m,n)σi(A)
其中, σ i ( A ) \sigma_i(A) σi(A)表示矩阵 A A A 的第 i i i 个奇异值,奇异值是矩阵 A A A 的奇异值分解(SVD)中的非负对角元素。
核范数的一些重要性质包括:
- 凸性:核范数是矩阵秩的凸包络,这意味着它是秩函数的最小凸近似。在优化问题中,使用核范数可以使得问题变得可解,因为秩函数是非凸的,而核范数是凸的。
- ** lipschitz连续性**:核范数是 lipschitz连续的,这意味着对于任意两个矩阵 A A A 和 B B B,存在常数 L L L 使得:
∥ A ∥ ∗ − ∥ B ∥ ∗ ∥ ≤ L ∥ A − B ∥ F \|A\|_* - \|B\|_* \| \leq L \|A - B\|_F ∥A∥∗−∥B∥∗∥≤L∥A−B∥F
其中 ( | \cdot |_F ) 表示 Frobenius 范数。 - 矩阵逼近:在给定矩阵的核范数约束下,最优的低秩逼近可以通过矩阵的奇异值软阈值化实现。这意味着核范数在低秩矩阵逼近问题中起着关键作用。
矩阵的Frobenius范数
矩阵的F范数,也称为Frobenius范数,是矩阵元素平方和的平方根。它将矩阵视为一个长向量,并计算其欧几里得范数。对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其Frobenius范数定义为:
∥ A ∥ F = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 \|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} ∥A∥F=i=1∑mj=1∑n∣aij∣2
其中, a i j a_{ij} aij 表示矩阵 A A A 的第 i i i 行第 j j j 列的元素。
Frobenius范数的一些重要性质包括:
- 与核范数的关系:对于任意矩阵 A A A,有 ∥ A ∥ ∗ ≤ ∥ A ∥ F \|A\|_* \leq \|A\|_F ∥A∥∗≤∥A∥F,其中 ∥ A ∥ ∗ \|A\|_* ∥A∥∗表示矩阵的核范数。
- 与2-范数的关系:对于矩阵 A A A ,其Frobenius范数等于其向量化的2-范数,即 ∥ A ∥ F = ∥ v e c ( A ) ∥ 2 \|A\|_F = \|vec(A)\|_2 ∥A∥F=∥vec(A)∥2,其中 v e c ( A ) vec(A) vec(A) 表示将矩阵 A A A 按列堆叠成向量。
paddle.linalg.norm(x, p=None, axis=None, keepdim=False, name=None)
将计算给定 Tensor 的矩阵范数(Frobenius 范数, Nuclear 范数或 p 范数)和向量范数(向量 1 范数、2 范数、或者通常的 p 范数)。
该函数计算的是向量范数还是矩阵范数,确定方法如下: - 如果 axis 是 int 类型,计算向量范数 - 如果 axis 是二维数组,计算矩阵范数 - 如果 axis 为 None,x 会被压缩成一维向量然后计算向量范数
Paddle 支持以下范数:
参数
x (Tensor) - 输入 Tensor。维度为多维,数据类型为 float32 或 float64。
p (int|float|string,可选) - 范数(ord)的种类。目前支持的值为fro(Frobenius范数) 、 nuc(核范数)、inf、-inf、0、1、2,和任何实数 p 对应的 p 范数。默认值为 None。
axis (int|list|tuple,可选) - 使用范数计算的轴。如果 axis 为 None,则忽略 input 的维度,将其当做向量来计算。如果 axis 为 int 或者只有一个元素的 list|tuple,norm API 会计算输入 Tensor 的向量范数。如果 axis 为包含两个元素的 list,API 会计算输入 Tensor 的矩阵范数。当 axis < 0 时,实际的计算维度为 rank(input) + axis。默认值为 None 。
keepdim (bool,可选) - 是否在输出的 Tensor 中保留和输入一样的维度,默认值为 False。当 keepdim 为 False 时,输出的 Tensor 会比输入 input 的维度少一些。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,在指定 axis 上进行范数计算的结果,与输入 input 数据类型相同。
import paddle
x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
print(x)# compute frobenius norm along last two dimensions.
out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
print(out_fro)# compute 2-order vector norm along last dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
print(out_pnorm)# compute 2-order norm along [0,1] dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
print(out_pnorm)# compute inf-order norm
out_pnorm = paddle.linalg.norm(x, p=float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
print(out_pnorm)# compute -inf-order norm
out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
print(out_pnorm)out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
print(out_pnorm)
条件数 cond
c o n d ( A , p ) = sup x ≠ 0 ∥ A ∥ p ∥ A − 1 ∥ p \mathrm{cond}(A,p) =\sup_{x\neq 0} \frac{\|A\|_p}{\|A^{-1}\|_p} cond(A,p)=x=0sup∥A−1∥p∥A∥p
其中 ∥ ⋅ ∥ p \| \cdot \|_p ∥⋅∥p 是矩阵的 p p p 范数。
根据范数种类 p 计算一个或一批矩阵的条件数,也可以通过 paddle.cond 来调用。
参数
x (Tensor):输入可以是形状为 (, m, n) 的矩阵 Tensor, * 为零或更大的批次维度,此时 p 为 2 或 -2;也可以是形状为 (, n, n) 的可逆(批)方阵 Tensor,此时 p 为任意已支持的值。数据类型为 float32 或 float64 。
p (float|string,可选):范数种类。目前支持的值为 fro(Frobenius范数) 、 nuc(核范数) 、 1 、 -1 、 2 、 -2 、 inf 、 -inf。默认值为 None,即范数种类为 2 。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,条件数的计算结果,数据类型和输入 x 的一致。
import paddle
paddle.seed(2023)
x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])# compute conditional number when p is None
out = paddle.linalg.cond(x)
print(out)# compute conditional number when order of the norm is 'fro'
out_fro = paddle.linalg.cond(x, p='fro')
print(out_fro)# compute conditional number when order of the norm is 'nuc'
out_nuc = paddle.linalg.cond(x, p='nuc')
print(out_nuc)# compute conditional number when order of the norm is 1
out_1 = paddle.linalg.cond(x, p=1)
print(out_1)# compute conditional number when order of the norm is -1
out_minus_1 = paddle.linalg.cond(x, p=-1)
print(out_minus_1)# compute conditional number when order of the norm is 2
out_2 = paddle.linalg.cond(x, p=2)
print(out_2)# compute conditional number when order of the norm is -1
out_minus_2 = paddle.linalg.cond(x, p=-2)
print(out_minus_2)# compute conditional number when order of the norm is inf
out_inf = paddle.linalg.cond(x, p=float("inf"))
print(out_inf)# compute conditional number when order of the norm is -inf
out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
print(out_minus_inf)a = paddle.randn([2, 4, 4])
print(a)a_cond_fro = paddle.linalg.cond(a, p='fro')
print(a_cond_fro)b = paddle.randn([2, 3, 4])
print(b)b_cond_2 = paddle.linalg.cond(b, p=2)
print(b_cond_2)
矩阵的秩
线性无关性的定义
一组向量被称为线性无关,如果其中没有任何一个向量可以表示为其他向量的线性组合, 例如
α 1 = ∑ i = 2 n k i α i \alpha_1 = \sum_{i=2}^n k_i\alpha_i α1=∑i=2nkiαi。
矩阵的行向量组和列向量组
给定一个 m × n m \times n m×n 矩阵 A A A ,它包含 m m m 个行向量和 n n n 个列向量。
极大线性无关组
在一组向量中,极大线性无关组是指包含最多线性无关向量的子集。添加任何额外的向量都会使该组变得线性相关。
矩阵的秩的定义
矩阵 A A A 的秩是指其行向量组或列向量组中极大线性无关组的大小。
矩阵的行秩等于其列秩,统称为矩阵的秩。
import paddlea = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)
相关文章:
[paddle] 矩阵相关的指标
行列式 det 行列式定义参考 d e t ( A ) ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) \sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)i1,i2,⋯,in…...
docker部署SpringBoot项目简单流程
一、docker基础命令理解学习 1、常见命令 docker启动之前要关闭防火墙systemctl stop firewalld # 关闭防火墙systemctl disable firewalld # 禁止开机启动防火墙systemctl start docker # 启动docker服务systemctl stop docker # 停止docker服务systemctl restart docker # …...
Python学习——函数参数详解
Python中的函数参数传递机制允许多种灵活的参数类型,可以根据需求灵活配置参数,这使得函数具有更强大的扩展性和适应性。以下是对各类参数类型的详细说明: 1. 定义函数的不同参数类型 1.1 位置参数 定义方式:def func(a, b2) 特…...
Chromium132 编译指南 - Android 篇(一):编译前准备
1. 引言 欢迎来到《Chromium 132 编译指南 - Android 篇》系列的第一部分。本系列指南将引导您逐步完成在 Android 平台上编译 Chromium 132 版本的全过程。Chromium 作为一款由 Google 主导开发的开源浏览器引擎,为众多现代浏览器提供了核心驱动力。而 Android 作…...
.Net / C# 繁体中文 与 简体中文 互相转换, 支持地方特色词汇
版本号 Nuget 搜索 “OpenCCNET”, 注意别找错, 好多库的名字都差不多 支持 “繁,简” 的互相转换, 支持多个地区常用词汇的转换, 还支持 日文的新旧转换. OpenCC 在 .Net 中的实现 https://github.com/CosineG/OpenCC.NET <PackageReference Include"OpenCCNET"…...
Java泛型深度解析(JDK23)
第一章 泛型革命 1.1 类型安全的进化史 前泛型时代的类型转换隐患 代码的血泪史(Java 1.4版示例): List rawList new ArrayList(); rawList.add("Java"); rawList.add(Integer.valueOf(42)); // 编译通过// 灾难在运行时爆发…...
【贪心算法篇】:“贪心”之旅--算法练习题中的智慧与策略(一)
✨感谢您阅读本篇文章,文章内容是个人学习笔记的整理,如果哪里有误的话还请您指正噢✨ ✨ 个人主页:余辉zmh–CSDN博客 ✨ 文章所属专栏:贪心算法篇–CSDN博客 文章目录 一.贪心算法1.什么是贪心算法2.贪心算法的特点 二.例题1.柠…...
AJAX XML
AJAX XML 引言 随着互联网技术的不断发展,Web应用对用户交互性和实时性的要求越来越高。AJAX(Asynchronous JavaScript and XML)技术的出现,为Web应用开发提供了强大的支持。AJAX技术允许Web应用在不重新加载整个页面的情况下,与服务器进行异步通信。XML作为数据传输格式…...
踏入编程世界的第一个博客
我,一个双非一本大一新生,普通的不能再普通了,面对宏伟庞大的计算机世界仍显得举手无措,我自以为自身仍有些许骨气,不想普普通通,甚是浑浑噩噩的度过四年大学,经历了高考的打击,双非…...
2025年1月22日(网络编程 udp)
系统信息: ubuntu 16.04LTS Raspberry Pi Zero 2W 系统版本: 2024-10-22-raspios-bullseye-armhf Python 版本:Python 3.9.2 已安装 pip3 支持拍摄 1080p 30 (1092*1080), 720p 60 (1280*720), 60/90 (640*480) 已安装 vim 已安装 git 学习…...
数据结构与算法之栈: LeetCode 641. 设计循环双端队列 (Ts版)
设计循环双端队列 https://leetcode.cn/problems/design-circular-deque/description/ 描述 设计实现双端队列。 实现 MyCircularDeque 类: MyCircularDeque(int k) :构造函数,双端队列最大为 k 。boolean insertFront():将一个元素添加到双端队列头部…...
从零开始学 HTML:构建网页的基本框架与技巧
系列文章目录 01-从零开始学 HTML:构建网页的基本框架与技巧 文章目录 系列文章目录前言一、HTML 文档的基本框架1.1 <!DOCTYPE html>、<html>、<head>、<body> 标签解析1.1.1 <!DOCTYPE html> 标签1.1.2 <html> 标签1.1.3 &l…...
一些杂记2
1.#define 1.1定义 #define 是一个预处理指令,用于定义宏 宏,是预处理阶段(在编译之前)由预处理器处理的代码片段 1.2使用 1.2.1 #define 可以定义常量 #define PI 3.14159 1.2.2 #define 可以定义宏函数 #define SQUARE(x) ((…...
C语言 --- 分支
C语言 --- 分支 语句分支语句含义if...else语句单分支if语句语法形式 双分支 if-else 语句语法形式 悬空else含义问题描述 多分支 if-else 语句语法形式 switch...case语句含义语法形式 总结 💻作者简介:曾与你一样迷茫,现以经验助你入门 C 语…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.10 ndarray内存模型:从指针到缓存优化
2.10 ndarray内存模型:从指针到缓存优化 目录 #mermaid-svg-p0zxLYqAnn59O2Xe {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-p0zxLYqAnn59O2Xe .error-icon{fill:#552222;}#mermaid-svg-p0zxLYqAnn59O…...
【Numpy核心编程攻略:Python数据处理、分析详解与科学计算】2.6 广播机制核心算法:维度扩展的数学建模
2.6 广播机制核心算法:维度扩展的数学建模 目录/提纲 #mermaid-svg-IfELXmhcsdH1tW69 {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-IfELXmhcsdH1tW69 .error-icon{fill:#552222;}#mermaid-svg-IfELXm…...
K8S极简教程(4小时快速学会)
1. K8S 概览 1.1 K8S 是什么 K8S官网文档:https://kubernetes.io/zh/docs/home/ 1.2 K8S核心特性 服务发现与负载均衡:无需修改你的应用程序即可使用陌生的服务发现机制。存储编排:自动挂载所选存储系统,包括本地存储。Secret和…...
系统URL整合系列视频二(界面原型)
视频 系统URL整合系列视频二(界面原型) 视频介绍 (全国)大型分布式系统Web资源URL整合需求界面原型讲解。当今社会各行各业对软件系统的web资源访问权限控制越来越严格,控制粒度也越来越细。安全级别提高的同时也增加…...
虚幻浏览器插件 UE与JS通信
温馨提示:本节内容需要结合插件Content下的2_Communication和Resources下的sample.html 一起阅读。 1. UE调用JS 1.1 JS脚本实现 该部分共两步: 导入jstote.js脚本实现响应函数并保存到 ue.interface 中 jsfunc 通过json对象传递参数,仅支持函数名小…...
OpenAI深夜反击:o3-mini免费上线,能否撼动DeepSeek的地位?
还在为寻找合适的 AI 模型而烦恼吗?chatTools 平台为您精选 o1、GPT4o、Claude、Gemini 等顶尖 AI 模型,满足您不同的 AI 应用需求。立即体验强大的 AI 能力! 深夜反击,OpenAI祭出o3-mini 在DeepSeek异军突起,搅动AI行…...
在软件开发中正确使用MySQL日期时间类型的深度解析
在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...
P3 QT项目----记事本(3.8)
3.8 记事本项目总结 项目源码 1.main.cpp #include "widget.h" #include <QApplication> int main(int argc, char *argv[]) {QApplication a(argc, argv);Widget w;w.show();return a.exec(); } 2.widget.cpp #include "widget.h" #include &q…...
Keil 中设置 STM32 Flash 和 RAM 地址详解
文章目录 Keil 中设置 STM32 Flash 和 RAM 地址详解一、Flash 和 RAM 配置界面(Target 选项卡)1. IROM1(用于配置 Flash)2. IRAM1(用于配置 RAM)二、链接器设置界面(Linker 选项卡)1. 勾选“Use Memory Layout from Target Dialog”2. 查看链接器参数(如果没有勾选上面…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...
【C语言练习】080. 使用C语言实现简单的数据库操作
080. 使用C语言实现简单的数据库操作 080. 使用C语言实现简单的数据库操作使用原生APIODBC接口第三方库ORM框架文件模拟1. 安装SQLite2. 示例代码:使用SQLite创建数据库、表和插入数据3. 编译和运行4. 示例运行输出:5. 注意事项6. 总结080. 使用C语言实现简单的数据库操作 在…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...
Chrome 浏览器前端与客户端双向通信实战
Chrome 前端(即页面 JS / Web UI)与客户端(C 后端)的交互机制,是 Chromium 架构中非常核心的一环。下面我将按常见场景,从通道、流程、技术栈几个角度做一套完整的分析,特别适合你这种在分析和改…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
pycharm 设置环境出错
pycharm 设置环境出错 pycharm 新建项目,设置虚拟环境,出错 pycharm 出错 Cannot open Local Failed to start [powershell.exe, -NoExit, -ExecutionPolicy, Bypass, -File, C:\Program Files\JetBrains\PyCharm 2024.1.3\plugins\terminal\shell-int…...
