OpenAI深夜反击:o3-mini免费上线,能否撼动DeepSeek的地位?
还在为寻找合适的 AI 模型而烦恼吗?chatTools 平台为您精选 o1、GPT4o、Claude、Gemini 等顶尖 AI 模型,满足您不同的 AI 应用需求。立即体验强大的 AI 能力!
深夜反击,OpenAI祭出o3-mini

在DeepSeek异军突起,搅动AI行业格局之际,OpenAI终于在深夜祭出了反击的大招——全新的o3-mini系列模型。这款免费开放的推理模型,被视为OpenAI在竞争日益激烈的AI市场中,试图夺回话语权的关键一步。那么,o3-mini究竟有何亮点?它能否撼动DeepSeek的地位?本文将为您深度解读。
o3-mini:轻量级模型的性能新标杆

作为o1-mini模型的继任者,o3-mini在性能上有了显著提升。OpenAI研究科学家Noam Brown表示,o3-mini在多项评估中表现优于o1,且成本更低。这表明OpenAI正在努力实现“以更低成本获取更高智能”的目标。
o3-mini的主要亮点包括:
- 快速推理: o3-mini主打快速推理,平均响应时间较o1-mini快了24%。同时,o3-mini(high)版本更擅长编码和逻辑推理。
- 支持联网搜索: o3-mini集成了搜索功能,能够实时获取最新答案并附带相关网页链接,方便用户进行深度调研。
- 安全合规: o3-mini的训练数据经过严格筛选,安全合规表现有所增强。
- 免费开放: OpenAI首次向免费用户开放推理模型的使用权限,降低了AI的使用门槛。
- 高级功能: o3-mini支持函数调用、结构化输出和开发者消息等高级功能,方便开发者进行应用开发。
这些亮点表明,o3-mini不仅在性能上有所提升,还在功能和易用性方面进行了优化,使其更具竞争力。
o3-mini的实测表现:亮点与不足并存

为了验证o3-mini的性能,我们进行了实测。在测试中,o3-mini的搜索功能表现出色,能够准确追溯到原始报道。然而,在一些逻辑推理题和脑筋急转弯方面,o3-mini的表现并不尽如人意。
尽管如此,o3-mini在一些专业领域的表现却相当出色。例如,在数学竞赛中,o3-mini在高等推理模式下达到了87.3%的准确率。在博士级别的科学问答任务中,o3-mini也取得了高达77.2%的得分。在编程方面,o3-mini(high)的ELO评分也达到了2130。
这些测试结果表明,o3-mini在不同领域的表现差异较大。虽然在某些方面表现出色,但仍然存在一些不足之处。
o3-mini与DeepSeek:竞争与差距
DeepSeek的崛起,无疑给OpenAI带来了巨大的压力。DeepSeek R1的开源,以及其在基础设施优化方面的创新,都让OpenAI感受到了竞争的激烈。那么,o3-mini与DeepSeek R1相比,究竟存在哪些差距?
- 开源与闭源: DeepSeek R1选择开源,吸引了大量开发者和研究人员的关注,形成了一个强大的生态系统。而o3-mini虽然免费开放使用,但仍然属于闭源模型,在生态建设方面存在一定劣势。
- 技术创新: DeepSeek在基础设施优化方面取得了显著进展,这使得其模型在训练和运行成本上更具优势。而o3-mini虽然在性能上有所提升,但在技术创新方面似乎略逊一筹。
- 模型性能: 虽然o3-mini在某些领域的表现出色,但整体来看,DeepSeek R1在多项任务中的表现更为均衡和强大。
这些差距表明,OpenAI在反击DeepSeek的过程中,仍然面临着巨大的挑战。
AI行业竞争:规模转向效能

o3-mini的发布,预示着AI行业的竞争正在从规模转向效能。如何以最优成本创造最大价值,将成为未来AI发展的新命题。OpenAI正在通过降低模型成本和提高模型性能来应对这一挑战。
DeepSeek的崛起,也让AI巨头们开始重新审视自己的发展战略。Meta等公司纷纷开始学习DeepSeek的技术,并试图将其应用到自己的产品中。这表明,AI行业的竞争将更加激烈,技术创新将成为决定胜负的关键。
开源与闭源:未来的较量
DeepSeek的开源策略,与OpenAI的闭源策略形成了鲜明对比。开源模式能够吸引更多的开发者和研究人员参与,加速技术创新和应用普及。而闭源模式则能够更好地保护知识产权和商业利益。
在未来的竞争中,开源与闭源的较量将更加激烈。哪种模式更具优势?这仍然是一个值得探讨的问题。但可以肯定的是,只有不断创新,才能在激烈的市场竞争中立于不败之地。
结语:AI竞争的新篇章
OpenAI o3-mini的发布,标志着AI行业竞争进入了新的篇章。虽然o3-mini在某些方面表现出色,但仍然无法完全撼动DeepSeek的地位。在未来的竞争中,OpenAI需要继续加强技术创新,并积极拥抱开源理念,才能在激烈的市场竞争中取得优势。
还在为寻找合适的 AI 模型而烦恼吗?chatTools 平台为您精选 o1、GPT4o、Claude、Gemini 等顶尖 AI 模型,满足您不同的 AI 应用需求。立即体验强大的 AI 能力!
相关文章:
OpenAI深夜反击:o3-mini免费上线,能否撼动DeepSeek的地位?
还在为寻找合适的 AI 模型而烦恼吗?chatTools 平台为您精选 o1、GPT4o、Claude、Gemini 等顶尖 AI 模型,满足您不同的 AI 应用需求。立即体验强大的 AI 能力! 深夜反击,OpenAI祭出o3-mini 在DeepSeek异军突起,搅动AI行…...
Golang 应用的 Docker 部署方式介绍及使用详解
本文将介绍如何使用 Docker 部署一个基于 Go 语言的后台服务应用 godco,并介绍如何配置 MongoDB 数据库容器的连接,确保应用能够成功启动并连接到容器方式部署的mongoDB数据库。 前提条件 1.已安装 Docker/Podman 2.已安装 MongoDB 数据库容器ÿ…...
deep seek R1本地化部署及openAI API调用
先说几句题外话。 最近deep seek火遍全球,所以春节假期期间趁着官网优惠充值了deep seek的API,用openAI的接口方式尝试了下对deep seek的调用,并且做了个简单测试,测试内容确实非常简单:通过prompt提示词让大模型对用…...
力扣第435场周赛讲解
文章目录 题目总览题目详解3442.奇偶频次间的最大差值I3443.K次修改后的最大曼哈顿距离3444. 使数组包含目标值倍数的最少增量3445.奇偶频次间的最大差值 题目总览 奇偶频次间的最大差值I K次修改后的最大曼哈顿距离 使数组包含目标值倍数的最少增量 奇偶频次间的最大差值II …...
初入机器学习
写在前面 本专栏专门撰写深度学习相关的内容,防止自己遗忘,也为大家提供一些个人的思考 一切仅供参考 概念辨析 深度学习: 本质是建模,将训练得到的模型作为系统的一部分使用侧重于发现样本集中隐含的规律难点是认识并了解模型&…...
Signature
Signature 题目是: import ecdsaimport randomdef ecdsa_test(dA,k):sk ecdsa.SigningKey.from_secret_exponent(secexpdA,curveecdsa.SECP256k1)sig1 sk.sign(databHi., kk).hex()sig2 sk.sign(databhello., kk).hex()#不同的kr1 int(sig1[:64], 16)s1 i…...
93,【1】buuctf web [网鼎杯 2020 朱雀组]phpweb
进入靶场 页面一直在刷新 在 PHP 中,date() 函数是一个非常常用的处理日期和时间的函数,所以应该用到了 再看看警告的那句话 Warning: date(): It is not safe to rely on the systems timezone settings. You are *required* to use the date.timez…...
笔灵ai写作技术浅析(四):知识图谱
知识图谱(Knowledge Graph)是一种结构化的知识表示方式,通过将知识以图的形式进行组织,帮助AI系统更好地理解和利用信息。在笔灵AI写作中,知识图谱技术被广泛应用于结构化组织各种领域的知识,使AI能够根据写作主题快速获取相关的背景知识、概念关系等,从而为生成内容提供…...
Chromium132 编译指南 - Android 篇(四):配置 depot_tools
1. 引言 在前面的章节中,我们详细介绍了编译 Chromium 132 for Android 所需的系统和硬件要求,以及如何安装和配置基础开发环境和常用工具。完成这些步骤后,接下来需要配置 depot_tools,这是编译 Chromium 的关键工具集。depot_t…...
使用真实 Elasticsearch 进行高级集成测试
作者:来自 Elastic Piotr Przybyl 掌握高级 Elasticsearch 集成测试:更快、更智能、更优化。 在上一篇关于集成测试的文章中,我们介绍了如何通过改变数据初始化策略来缩短依赖于真实 Elasticsearch 的集成测试的执行时间。在本期中࿰…...
SQL进阶实战技巧:如何分析浏览到下单各步骤转化率及流失用户数?
目录 0 问题描述 1 数据准备 2 问题分析 3 问题拓展 3.1 跳出率计算...
机器学习--概览
一、机器学习基础概念 1. 定义 机器学习(Machine Learning, ML):通过算法让计算机从数据中自动学习规律,并利用学习到的模型进行预测或决策,而无需显式编程。 2. 与编程的区别 传统编程机器学习输入:规…...
低代码系统-产品架构案例介绍、炎黄盈动-易鲸云(十二)
易鲸云作为炎黄盈动新推出的产品,在定位上为低零代码产品。 开发层 表单引擎 表单设计器,包括设计和渲染 流程引擎 流程设计,包括设计和渲染,需要说明的是:采用国际标准BPMN2.0,可以全球通用 视图引擎 视图…...
Electricity Market Optimization 探索系列(二)
本文参考链接link 负荷持续时间曲线 (Load Duration Curve),是根据实际的符合数据进行降序排序之后得到的一个曲线 这个曲线能够发现负荷在某个区间时,将会持续多长时间,有助于发电容量的规划 净负荷(net load) 是指预期负荷和预期可再生…...
OpenAI 实战进阶教程 - 第一节:OpenAI API 架构与基础调用
目标 掌握 OpenAI API 的基础调用方法。理解如何通过 API 进行内容生成。使用实际应用场景帮助零基础读者理解 API 的基本用法。 一、什么是 OpenAI API? OpenAI API 是一种工具,允许开发者通过编程方式与 OpenAI 的强大语言模型(例如 gpt-…...
TensorFlow简单的线性回归任务
如何使用 TensorFlow 和 Keras 创建、训练并进行预测 1. 数据准备与预处理 2. 构建模型 3. 编译模型 4. 训练模型 5. 评估模型 6. 模型应用与预测 7. 保存与加载模型 8.完整代码 1. 数据准备与预处理 我们将使用一个简单的线性回归问题,其中输入特征 x 和标…...
【视频+图文详解】HTML基础4-html标签的基本使用
图文教程 html标签的基本使用 无序列表 作用:定义一个没有顺序的列表结构 由两个标签组成:<ul>以及<li>(两个标签都属于容器级标签,其中ul只能嵌套li标签,但li标签能嵌套任何标签,甚至ul标…...
在Arm芯片苹果Mac系统上通过homebrew安装多版本mysql并解决各种报错,感谢deepseek帮助解决部分问题
背景: 1.苹果设备上安装mysql,随着苹果芯片的推出,很多地方都变得不一样了。 2.很多时候为了老项目能运行,我们需要能安装mysql5.7或者mysql8.0或者mysql8.2.虽然本文编写时最新的默认mysql已经是9.2版本。 安装步骤 1.执行hom…...
c++可变参数详解
目录 引言 库的基本功能 va_start 宏: va_arg 宏 va_end 宏 va_copy 宏 使用 处理可变参数代码 C11可变参数模板 基本概念 sizeof... 运算符 包扩展 引言 在C编程中,处理不确定数量的参数是一个常见的需求。为了支持这种需求,C标准库提供了 &…...
【深度分析】DeepSeek 遭暴力破解,攻击 IP 均来自美国,造成影响有多大?有哪些好的防御措施?
技术铁幕下的暗战:当算力博弈演变为代码战争 一场针对中国AI独角兽的全球首例国家级密码爆破,揭开了数字时代技术博弈的残酷真相。DeepSeek服务器日志中持续跳动的美国IP地址,不仅是网络攻击的地理坐标,更是技术霸权对新兴挑战者的…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...
基于距离变化能量开销动态调整的WSN低功耗拓扑控制开销算法matlab仿真
目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.算法仿真参数 5.算法理论概述 6.参考文献 7.完整程序 1.程序功能描述 通过动态调整节点通信的能量开销,平衡网络负载,延长WSN生命周期。具体通过建立基于距离的能量消耗模型&am…...
【Oracle APEX开发小技巧12】
有如下需求: 有一个问题反馈页面,要实现在apex页面展示能直观看到反馈时间超过7天未处理的数据,方便管理员及时处理反馈。 我的方法:直接将逻辑写在SQL中,这样可以直接在页面展示 完整代码: SELECTSF.FE…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...
相机从app启动流程
一、流程框架图 二、具体流程分析 1、得到cameralist和对应的静态信息 目录如下: 重点代码分析: 启动相机前,先要通过getCameraIdList获取camera的个数以及id,然后可以通过getCameraCharacteristics获取对应id camera的capabilities(静态信息)进行一些openCamera前的…...
【Go语言基础【13】】函数、闭包、方法
文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数(函数作为参数、返回值) 三、匿名函数与闭包1. 匿名函数(Lambda函…...
在鸿蒙HarmonyOS 5中使用DevEco Studio实现企业微信功能
1. 开发环境准备 安装DevEco Studio 3.1: 从华为开发者官网下载最新版DevEco Studio安装HarmonyOS 5.0 SDK 项目配置: // module.json5 {"module": {"requestPermissions": [{"name": "ohos.permis…...
MySQL体系架构解析(三):MySQL目录与启动配置全解析
MySQL中的目录和文件 bin目录 在 MySQL 的安装目录下有一个特别重要的 bin 目录,这个目录下存放着许多可执行文件。与其他系统的可执行文件类似,这些可执行文件都是与服务器和客户端程序相关的。 启动MySQL服务器程序 在 UNIX 系统中,用…...
FTXUI::Dom 模块
DOM 模块定义了分层的 FTXUI::Element 树,可用于构建复杂的终端界面,支持响应终端尺寸变化。 namespace ftxui {...// 定义文档 定义布局盒子 Element document vbox({// 设置文本 设置加粗 设置文本颜色text("The window") | bold | color(…...
